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Summary. Model-based estimation of the effect of an exposure on an outcome is generally sensitive to the choice of which
confounding factors are included in the model. We propose a new approach, which we call Bayesian adjustment for confounding
(BAC), to estimate the effect of an exposure of interest on the outcome, while accounting for the uncertainty in the choice of
confounders. Our approach is based on specifying two models: (1) the outcome as a function of the exposure and the potential
confounders (the outcome model); and (2) the exposure as a function of the potential confounders (the exposure model). We
consider Bayesian variable selection on both models and link the two by introducing a dependence parameter, ω, denoting
the prior odds of including a predictor in the outcome model, given that the same predictor is in the exposure model. In
the absence of dependence (ω = 1), BAC reduces to traditional Bayesian model averaging (BMA). In simulation studies, we
show that BAC, with ω > 1, estimates the exposure effect with smaller bias than traditional BMA, and improved coverage.
We, then, compare BAC, a recent approach of Crainiceanu, Dominici, and Parmigiani (2008, Biometrika 95, 635–651), and
traditional BMA in a time series data set of hospital admissions, air pollution levels, and weather variables in Nassau, NY
for the period 1999–2005. Using each approach, we estimate the short-term effects of PM2.5 on emergency admissions for
cardiovascular diseases, accounting for confounding. This application illustrates the potentially significant pitfalls of misusing
variable selection methods in the context of adjustment uncertainty.
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1. Introduction
Estimating the effect of an exposure on an outcome, while
properly adjusting for confounding factors, is a common goal
in biomedical research. A prominent and controversial ex-
ample arises in observational studies of the health effects of
environmental contaminants, where the choice of potential
confounders is challenging, and major policy decisions can de-
pend on it. The most common practice is currently to select
a statistical model for the estimation of the effect, and report
effect estimates and confidence intervals (CIs) that are con-
ditional on that model being correct. This does not account
for “adjustment uncertainty,” that is uncertainty about which
variables should be included in the model to properly adjust
for confounding.

It is possible to effectively convey this uncertainty by sen-
sitivity analysis, showing the variation of the effect estimate
and its interval over a range of plausible choices of con-
founders (Dominici, McDermott, and Hastie, 2004; Peng, Do-
minici, and Louis, 2006). Bayesian model averaging (BMA)
has been suggested as a more formal tool to account for
model uncertainty. Bayesian predictions that account for un-
certainty in the selection of predictors (Raftery, Madigan,
and Hoeting, 1997; Hoeting et al., 1999) are based on treat-

ing the indicators of whether each predictor is included in
the model as unknown nuisance parameters. This results in
a weighted average of predictions whose weights depend on
the support that each selection receives from the data. This
principled approach enjoys a number of desirable proper-
ties from a frequentist point of view as well, and has per-
formed competitively in out-of-sample prediction comparisons
(Chipman, George, and McCulloch, 2002; Yeung, Bumgarner,
and Raftery, 2005). The conceptual simplicity and solid logic
behind treating the unknown confounder subset as a param-
eter is attractive in adjustment uncertainty as well. Raftery
(1995) and Hoeting et al. (1999) suggested to estimate the
exposure effect by a weighted average of model-specific ef-
fect estimates, again using the model’s posterior probabili-
ties as weights. Viallefont, Raftery, and Richardson (2001)
applied this method to estimate an exposure’s odds ratio in
case-control studies. Other applications include air pollution
research (Clyde, 2000; Koop and Tole, 2004).

However, though effective in some cases, traditional im-
plementations of BMA can face severe limitations in effect
estimation. Most of these can be traced to the fundamen-
tal difficulty arising with the fact that regression coefficients
may have a different interpretation across models, a fact only
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recently being introduced explicitly in the specification
of prior distributions (Consonni and Veronese, 2008).
Crainiceanu et al. (2008) noted that model uncertainty meth-
ods useful in prediction may not generally perform well in ad-
justment uncertainty. They introduced a two-step approach
(CDP) to estimate an exposure effect accounting for adjust-
ment uncertainty. In the first step, this approach regresses
exposure on a large set of potential confounders and selects
confounders that are associated with exposure. In the second
step, it regresses outcome on exposure, after including the
confounders identified in the first step. Compared to this ap-
proach, traditional BMA with vague priors on the model space
did not perform well. This is because the posterior model
probabilities used to weight the model-specific estimates of
the exposure effect might not reflect the model’s ability to
estimate the exposure effect, properly adjusting for confound-
ing. For example, it can be that large weights are assigned to
models that do not adequately adjust for confounders, lead-
ing to a biased estimate of the exposure effect. This problem
may become more serious when limited prior information is
available on the effect of interest.

Here, we develop a novel Bayesian approach to adjust-
ment uncertainty, which we call “Bayesian adjustment for con-
founding” (BAC). We consider the selection of confounders as
a random variable, as in BMA, while overcoming the pitfalls
described earlier. Our method makes explicit allowance for
the fact that the interpretation of the effects can vary across
models. BAC addresses this by explicitly focusing on models
that are fully adjusted for confounding. Our technique gener-
alizes BMA to simultaneous modeling of the exposure and the
outcome. Our approach is based on specifying two models: (1)
the outcome as a function of the exposure and the potential
confounders (the outcome model); and (2) the exposure as a
function of the potential confounders (the exposure model).
The key to our approach is the specification of a prior dis-
tribution such that, conditional on a predictor’s inclusion in
the exposure model, the same predictor should also have a
higher probability to be included in the outcome model. To
this end, our prior specification includes a dependence pa-
rameter, ω, representing the odds of including a predictor in
the outcome model given that the same predictor is in the
exposure model. This leads to a model-weighting strategy for
effect estimation accounting for adjustment uncertainty. This
strategy assigns high weights to models that are likely to in-
clude all the necessary confounders. Our method is explicitly
designed to provide competitive results even without strong
prior information on the magnitude of the effect.

Although we do not take a causal inference perspective, our
method has points of contacts with causal inference method-
ologies that are based on joint modeling of exposure and out-
come as functions of confounders (Rosenbaum and Rubin,
1983; Robins, Mark, and Newey, 1992) and with their
Bayesian counterparts (McCandless, Gustafson, and Austin,
2009). This literature strongly emphasizes, as we do, the crit-
ical role of model specification and the need for robustness
to the choice of confounders (Rubin, 1997; Bang and Robins,
2005; Greenland, 2008). From this perspective, our method-
ology achieves a combination of three desirable properties:
effect estimation efficiency, via the exposure model; variable
selection robustness, achieved by allowing the selection to be

a random variable; and bias reduction, achieved by includ-
ing prior information to favor predictors of exposure in the
selection of variables for the outcome model.

2. Bayesian Adjustment for Confounding
2.1 Models
We build a model for estimating the effect of exposure, or
treatment, X on outcome Y . We also have information on
a set of M potential confounders U = {U1, . . . , UM } iden-
tified because they are likely to affect Y, though their ef-
fects could be weak. A priori, there may be uncertainty about
whether potential confounders should be adjusted for in effect
estimation.

Although many of our ideas are more general, we discuss
our approach in the context of simultaneous linear regression
models with two equations, namely, one for exposure and one
for outcome. In each equation, potential confounders are ei-
ther included or excluded, depending on unknown vectors of
indicators αX ∈ {0, 1}M and αY ∈ {0, 1}M . Here, αX

m = 1 (or
αY

m = 1) whenever Um is included in the exposure (or out-
come) model. For brevity, we refer to the parameters, α′s as
“models.” Conditional on unknown parameters (indicated by
Greek letters), and confounders, the regression equations for
exposure Xi and outcome Yi are,

E{Xi} =
M∑

m =1

αX
m δα X

m Uim , (1)

E{Yi |Xi} = βα Y
Xi +

M∑
m =1

αY
m δα Y

m Uim , (2)

where i indexes the sampling unit. For regression coefficients,
β and δ, we use a notation that explicitly keeps track of the
fact that those coefficients differ in meaning with the α’s. This
is especially important when one attempts to make inferences
that involve estimates of the exposure effect obtained using
different models. Intercept columns can be included among
the U ’s. Some αY

m ’s can be set to one, if confounders are
deemed required.

In developing a model for effect estimation, when a true
confounder is added or removed from the regression model,
the interpretation of the exposure coefficient changes; how-
ever, when a model includes all true confounders, and one
adds an additional variable that is not associated with X or
that is not associated with neither X nor Y, the interpretation
of the exposure coefficient does not change. This is in contrast
to prediction, where the predicted quantities typically main-
tain the same interpretation across models.

Thus, when studying confounding adjustment, it is useful
to consider the smallest outcome model that includes all the
necessary confounders. We denote it by αY

∗, and refer to it as
the minimal model. The estimand of interest—the true effect
of X on Y, is the coefficient of X in this model, or β∗ = βα Y∗ .
If there are interactions between exposure and confounders,
the estimands are model coefficients of both the main effect
and the interaction terms. Without loss of generality, we will
focus on the situation where there are no interaction terms.
Our goal is estimation of β∗ when αY

∗ is unknown. A key
observation is that all models that contain at least as many
confounders as the minimal model will provide estimates of
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Figure 1. An illustrative example. Solid arrows indicate
strong correlation, and dashed arrows indicate weak
correlation.

the exposure effect that are also interpretable as estimates
of β∗. On the other hand, a model that does not include the
minimal model, that is, a model that excludes at least one
true confounder, will provide estimates of a parameter that is
not the estimand of interest.

2.2 A Basic Illustration
It is useful to illustrate our approach using a simple example.
Consider the situation depicted in Figure 1 —U1 is strongly
correlated with both exposure and outcome; U2 is strongly
correlated with exposure, but weakly with outcome; U3 is
strongly correlated with outcome and weakly correlated with
exposure; U4 is strongly correlated with outcome and uncorre-
lated with exposure; and finally, U5 is uncorrelated with both.

In this example, U1, U2, and U3 are the true confounders
of the effect of X on Y and the minimal model that can
provide a correctly adjusted effect is αY

∗ = (1, 1, 1, 0, 0). The
true model is αY = (1, 1, 1, 1, 0); this “includes” αY

∗, that is,
it includes all the variables in αY

∗. In addition, the true model
also includes U4. Because U4 is not correlated with X , the
interpretation of βα Y is the same as that of βα Y∗ . Therefore,
the true model also allows for correct adjustment. Because U4

is correlated with Y, including it can improve overall model
fitting, which may yield smaller standard error of the X co-
efficient estimate. Thus, the true model may potentially lead
to greater efficiency than the minimal model, though greater
efficiency is not guaranteed in a finite sample. The full model
αY = (1, 1, 1, 1, 1) also contains αY

∗ and a correctly defined
coefficient. On the other hand, a model that does not include
αY
∗ will estimate a parameter that is not properly adjusted for

confounding. For example, the model αY = (1, 0, 1, 1, 0) will
estimate a βα Y that is not adjusted by U2, which is an impor-
tant confounder. Nonetheless, it may still be a useful model
for prediction and may receive relatively strong support from
the data.

To illustrate, we construct a simulated data set where the
variables satisfy the relationships of Figure 1, using the cor-
relations of Table 1, and regressions, as,

Xi = δX
1 Ui1 + δX

2 Ui2 + δX
3 Ui3 + εX

i

Yi = βXi + δY
1 Ui1 + δY

2 Ui2 + δY
3 Ui3 + δY

4 Ui4 + εY
i , (3)

where i = 1, . . . , 1000, εX
i , εY

i are independent N (0, σ2
X )

and N (0, σ2
Y ), respectively, and the Um ’s are independent

N (0, σ2
U ). We set δX = (1, 1, 0.1), δY = (1, 0.1, 1, 1), β = 0.1,

and σ2
X = σ2

Y = σ2
U = 1. Using data so generated, we estimate

β by maximum likelihood using two models—one is the true

Table 1
The correlation matrix of the simulated data set in

Section 2.2⎛⎜⎜⎜⎜⎜⎜⎜⎝

X U1 U2 U3 U4 U5 Y
X 1.00 0.57 0.58 0.04 0.01 −0.01 0.41
U1 0.57 1.00 0.00 −0.06 0.03 −0.03 0.51
U2 0.58 0.00 1.00 −0.02 0.01 0.04 0.09
U3 0.04 −0.06 −0.02 1.00 0.02 −0.03 0.48
U4 0.01 0.03 0.01 0.02 1.00 −0.01 0.50
U5 −0.01 −0.03 0.04 −0.03 −0.01 1.00 −0.02
Y 0.41 0.51 0.09 0.48 0.50 −0.02 1.00

⎞⎟⎟⎟⎟⎟⎟⎟⎠

model and the other is the smaller model αY = (1, 0, 1, 1, 0),
which, unlike (3) does not include the true confounder U2.
Results are summarized in Table 2.

The BICs (Schwarz, 1978) for the true model and the
smaller model are similar (2882.228 for true model and
2878.249 for smaller model), indicating that they fit the data
comparably. The likelihood ratio test for the difference be-
tween them has p-value 0.087. However, the two models pro-
vide widely different estimates of β. The estimate from true
model is 0.121 (95% CI 0.059–0.183), whereas that from
smaller model is 0.160 (95% CI 0.116–0.204). In fact, the two
estimates have different interpretations. In this case, only the
larger and true model provides an estimate of the exposure
effect that is properly adjusted for confounding. This simple
example illustrates that model selection approaches for ad-
justment uncertainty in effect estimation should be different
from model selection approaches whose goal is prediction of
the outcome. In the former, models are valuable to the extent
that they correctly estimate a single parameter of interest.
In the latter, models are valuable to the extent that they ac-
curately predict the outcome—which can often be achieved
even by models that provide systematically biased estimates
of the exposure effect.

2.3 Prior Distributions and Implementation of BAC
The importance of including in the outcome model all the
potential confounders that belong to the minimal model sug-
gests that an approach that acknowledges the fact that only
a fraction of the models harbor the coefficient of interest with
the correct interpretation, could be successful in addressing
adjustment uncertainty from a Bayesian standpoint. We pro-
pose to pursue this idea via a novel approach called BAC,
which jointly considers the exposure and outcome models, as
in equations (1) and (2), and includes unknown model selec-
tion parameters, αX and αY . We specify a prior distribution
on αY |αX , such that

P
(
αY

m = 1
∣∣αX

m = 1
)

P
(
αY

m = 0
∣∣αX

m = 1
) = ω,

P
(
αY

m = 1
∣∣αX

m = 0
)

P
(
αY

m = 0
∣∣αX

m = 0
) = 1, m = 1, . . . , M, (4)

where ω ∈ [1,∞] is a dependence parameter denoting the prior
odds of including Um into the outcome model, when Um is in-
cluded in the exposure model. When ω = ∞, the first equation
in (4) becomes P (αY

m = 1|αX
m = 1) = 1, and requires that any
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Table 2
Comparison of model posteriors from BMA, BAC, and TBAC. The estimate of β from BMA is 0.157 with 95% credible interval

(0.105, 0.203), that from BAC is 0.121 with 95% credible interval (0.059, 0.182), and that from TBAC is 0.121 with 95%
credible interval (0.059, 0.183). BMA is implemented forcing the exposure to always be in the model (FBMA). The dependence

parameters, ω, in both BAC and TBAC are set to ∞
95% Confidence BMA BAC TBAC

Model β̂ interval BIC weight weight weight

(1,1,1,1,0; true model (3)) 0.121 (0.059, 0.183) 2882.228 0.060 0.985 0.970
(1,0,1,1,0) 0.160 (0.116, 0.204) 2878.249 0.927 0.000 0.000
(1,1,1,1,1) 0.122 (0.060, 0.184) 2888.834 0.001 0.015 0.030
(1,0,1,1,1) 0.160 (0.116, 0.204) 2884.771 0.012 0.000 0.000
(1,1,1,0,0) 0.096 (0.009, 0.183) 3545.253 0.000 0.000 0.000

Note: The weight in each of the three methods is defined as P (αY |D), the posterior of αY. This posterior is calculated differently in each
method. The posterior from BMA is calculated using a uniform prior on αY ; that from BAC is calculated from the marginal of P (αX, αY |D),
where the prior of P (αX, αY ) is defined in equation (5); and that from TBAC is calculated by using P (αY |X) defined in equation (7) as the
prior on αY.

Um for which αX
m = 1 is automatically included in the out-

come model. When 1 < ω < ∞, our prior on αY |αX provides
a chance to rule out the predictors that are only associated
with X but not associated with Y . To account for the feed-
back effect of αY on αX, we also set

P
(
αX

m = 1
∣∣αY

m = 0
)

P
(
αX

m = 0
∣∣αY

m = 0
) =

1
ω

,
P
(
αX

m = 1
∣∣αY

m = 1
)

P
(
αX

m = 0
∣∣αY

m = 1
) = 1,

to assign low probabilities for predictors not selected by the
outcome model to be included in the exposure model. The
joint prior of (αX, αY ) implied by these conditional specifica-
tions is,

P
(
αX

m = 0, αY
m = 0

)
= P

(
αX

m = 0, αY
m = 1

)
= P

(
αX

m = 1, αY
m = 1

)
= ω/(3ω + 1)

P
(
αX

m = 1, αY
m = 0

)
= 1/(3ω + 1). (5)

The conditional prior of αY given αX in (4) plays a key
role in approximating the marginal posterior distribution of
the exposure coefficient under the minimal model, β∗,

P (β∗|D) =
∑
α Y

P (β∗|αY, D)P (αY |D),

where D = (X , Y ) contains vectors of observed data for X
and Y . Our analysis is also conditional on observed data for
potential confounders U , and they will not be noted in pos-
teriors for simplicity of notation. When ω is large, the condi-
tional prior in (4) greatly increases the chance for predictors
strongly correlated with X to be included in the outcome
model. These predictors are confounders if they are also cor-
related with Y . Therefore, the prior leads to a posterior distri-
bution of αY (P (αY |D)) that assigns mass mostly to models
that are fully adjusted for confounding, that is, models con-
taining the minimal model. For these models, βα Y = β∗ so
that P (β∗|αY, D) = P (βα Y|αY, D). Therefore, approximately,

P (β∗|D) .=
∑
α Y

P (βα Y|αY, D)P (αY |D), (6)

where P (βαY|αY, D) can be directly estimated from ob-
served data. This approximation will be further discussed in
Section 3.

Our goal is to calculate the posterior distribution of the
parameters of interest (αX, αY, β∗) in equations (1) and (2).
In our implementation, we assume the following priors
for model parameters: δαX|(αX, τX) ∼ N (μ0α X, (τX)−1φ2

Σ0α X ), (βα Y
, δαY

)|(αY, τY ) ∼ N (μ0α Y, (τY )−1φ2Σ0α Y ),
τX, τY ∼Gamma(ν/2, νλ/2), where ν, λ, φ, the M -vector
μ0α X, the (M + 1)-vector μ0α Y, the M × M -matrix Σ0α X, and
the (M + 1) × (M + 1)-matrix Σ0α Y are hyperparameters
that are selected as in Raftery et al. (1997). To implement
the Markov chain Monte Carlo (MCMC) algorithm, we
make the following assumptions:

A1: (βα Y
, X) are independent of αY given (αX, Ỹ ), where

Ỹ = Y − βα Y
X .

A2: X is independent of αY given αX.
A3: (βα Y

, Y ) are independent of αX given (αY, X).
A4: Ỹ is independent of αX given αY.

The assumptions can be interpreted as follows. A1: Given
a known Ỹ and a known exposure model, the selection of the
outcome model should no longer depend on the exposure and
its effect on Y. A2: Given that we know the covariates that
are included in the exposure model (i.e., αX ), the outcome
model should not provide additional information on X . The
two remaining assumptions can be interpreted similarly, ex-
cept that they are conditioning on the outcome model instead
of the exposure model.

We use a MCMC algorithm to draw posterior samples
of (αX, αY, βα Y ) to approximate P (αX, αY, β∗|D). These pos-
terior samples are obtained by iteratively sampling from
P (αX |βαY

, αY, D), P (αY |βα Y
, αX, D) and P (βα Y |αX, αY, D).

Sampling from the first two full conditionals is achieved by
the MC3 method (Madigan and York, 1995). The derivation
of these full conditionals is described in Web Appendix A.

2.4 Two-stage Bayesian Adjustment for Confounding (TBAC)
In this subsection, we consider a second approach which, when
calculating the posterior distribution of (βα Y

, αX, αY ), cuts the
feedback from αY to αX. This approach, called two-stage BAC
(TBAC), treats the exposure and outcome models separately
in two stages.
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TBAC requires Assumption A2 as well as the following
assumption:

A1′: βα Y is independent of αY given Ỹ .

Assumption A1′ is similar to Assumption A1 except that
X is not taken into account because TBAC will treat X as
fixed when considering the outcome model in its second stage.

In stage one of TBAC, we specify a uniform prior on αX, a
conditional prior on αY |αX as defined in equation (4) and use
the exposure model only to calculate P (αX|X) and P (αY |X).
These two posterior distributions are calculated as follows:

P (αX|X) ∝ P (X|αX )P (αX )

P (αY |X) =∑
α X

P (αY |αX , X)P (αX|X)
using A2
====

∑
α X

P (αY |αX )P (αX|X),

(7)

where the expression of P (X |αX) is given in Web
Appendix A.

In stage two of TBAC, we use P (αY |X) as prior on αY

and approximate P (αY, β∗|D) by P (αY, βα Y|D). We assume the
same prior distributions for model parameters as in BAC and
implement two separate MCMC algorithms for each of the
two stages. Details on the sampling algorithms are described
in Web Appendix A.

TBAC can be considered as a BMA method on the outcome
model with an informative model prior P (αY |X) obtained
from stage one. This prior is the key difference between TBAC
and traditional BMA, in which a flat uniform prior on the
outcome model is typically assumed. In the following section,
we will provide a detailed comparison between BAC/TBAC
and BMA.

3. Relation to BMA
In the context of effect estimation, several authors (Raftery,
1995; Hoeting et al., 1999) suggested to calculate the posterior
distribution of the effect by taking an average over models,
weighted by their posterior probabilities,∑

α Y

P (βαY|αY , Y )P (αY |Y ). (8)

This corresponds to marginalization, according to the law of
total probabilities, but only if the parameters βα Y have the
same interpretation.

From the perspective of adjustment uncertainty, (8) can be
decomposed into two parts, which are, the sum over models
that include the correct estimand, and the rest. That is,∑

α Y ⊇α Y∗

P (β∗|αY, Y )P (αY |Y )

+
∑

α Y �α Y∗

P (βαY|αY, Y )P (αY |Y ), (9)

where α ⊇ α′ indicates that model α contains all the variables
that are also contained in model α′. The second term of (9)
averages across models that do not include αY

∗, and therefore,
do not estimate the same effect.

In BMA, one needs to be careful about not assigning large
weights to the models in the second term of equation (9). A
common practice in traditional implementations of BMA is
to use uniform, or highly dispersed, priors on the αY s and
often on the effect of interest as well. When the prior is the
same for all models, the ratio of the weights given to models
α1 and α2 is the Bayes Factor (P (Y |α1)/P (Y |α2); Kass and
Raftery, 1995) and the posterior model probabilities in BMA
are driven by a model’s predictive ability, which may differ
from its ability to properly adjust for confounding in effect
estimation.

To illustrate, the fifth column in Table 2 lists model weights
used by BMA in the simulated data set in Section 2.2. Most
of the weight (92.7%) is assigned to model (1, 0, 1, 1, 0), which
does not include all requisite confounders, and estimates the
effect at 0.160 (95% CI 0.116–0.204). In contrast, only 6.0% of
the weight is assigned to the true model (3) which estimates
the correct β∗. Thus, the BMA estimate of β (which is equal
to 0.157) is severely biased and its associated 95% credible
interval (0.105, 0.203) does not cover the true value of 0.1.
We repeated the simulation 1000 times. The coverage rate for
the 95% credible interval is only 0.79.

BAC and TBAC are constructed using the same general
principles as BMA, but, in our view, offer a far more appropri-
ate prior for the model αY . The conditional prior P (αY |αX )
defined in equation (4) includes BMA as a special case of
ω = 1, where a flat uniform prior is assigned to αY . But when
ω is larger than one, the prior of αY |αX is informative and
incorporates information on which U ′s are good predictors
of X . TBAC exploits the exposure model to identify con-
founders highly correlated with X . Some of these confounders,
if weakly correlated with Y, may not be identified by the out-
come model alone. BAC shares the same property as TBAC,
and in addition uses a full Bayesian approach in its imple-
mentation, which includes feedback from the outcome model
to the exposure model. Therefore, compared to BMA, BAC,
and TBAC attempt to place most of the posterior weights
P (αY |D) on the first term in equation (9) and away from the
second. To illustrate, Table 2 lists the model posterior weights
based on BAC—98.5% of the weight is assigned to the true
model, compared to only 6.0% assigned to the same model as
the one selected by BMA. No weight is assigned to models
not nesting the minimal model, compared to 93.9% in total
assigned by BMA. This result illustrates that linking the two
variable selection problems can assign large weights to models
including the minimal model, in cases when BMA can fail to
do so. This is also the heuristic behind approximation (6).

4. Simulations
In this section, we conduct simulation studies to illustrate
and compare the practical properties of BAC, TBAC, CDP
(a two-step frequentist approach accounting for adjustment
uncertainty by Crainiceanu et al., 2008), traditional BMA
(Raftery, 1995; Hoeting et al., 1999), and standard stepwise
selection (Mickey and Greenland, 1989). We consider two
simulation scenarios. The first shows that BMA can provide
a very biased estimate of the exposure effect even under a
very simple setting with only two confounders in the true
model. In contrast, BAC can fully adjust for confounding and
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Table 3
Comparison of estimates of β from six methods, along with

the gold standard (true model) in the first simulation scenario.
BIAS is the difference between the mean of estimates of β and
the true value, SEE is the mean of standard error estimates,
SSE is the standard error of the estimates of β, MSE is the
mean square error, and CP is the coverage probability of the

95% CI or credible interval

Method BIAS SEE SSE MSE CP

True model 0.000 0.044 0.044 0.002 0.95
BAC ω = ∞ 0.000 0.044 0.044 0.002 0.94

ω = 10 0.018 0.047 0.050 0.003 0.91
ω = 4 0.027 0.046 0.052 0.003 0.87
ω = 2 0.034 0.045 0.052 0.004 0.84

TBAC ω = ∞ 0.000 0.044 0.044 0.002 0.95
ω = 10 0.018 0.047 0.050 0.003 0.92
ω = 4 0.026 0.046 0.051 0.003 0.89
ω = 2 0.034 0.045 0.051 0.004 0.84

CDP 0.000 0.044 0.045 0.002 0.95
FBMA 0.041 0.044 0.051 0.004 0.78
NBMA −0.009 0.050 0.074 0.006 0.72
Stepwise 0.019 0.039 0.058 0.004 0.72

provide unbiased parameter estimates. The second shows sim-
ilar results in a more complex setting.

In our simulations, we consider both BAC and TBAC
with ω = 2, 4, 10 or ∞. For BMA, we consider two different
implementations—the first is forcing the exposure to always
be in the model (FBMA), whereas the second (NBMA) is not.
For the stepwise method, the threshold for adding a variable
into the model is taken as 0.20, and the threshold for removing
a variable is taken as 0.05 (Mickey and Greenland, 1989).

Our first scenario is similar to the one in Crainiceanu
et al. (2008) and considers the true model, Yi = βXi +
δY

1 U1i + δY
2 U2i + εY

i , where i = 1, . . . , 1000, and εY
i are in-

dependent N (0, 1). (Xi , U1i , U2i ) are independent normal
vectors with mean zero and a covariance matrix, Σ =
(σk l )3×3, where σkk = 1, k = 1, 2, 3, σ12 = σ21 = ρ, and σ13 =
σ23 = σ31 = σ32 = 0. The set of potential confounders, U , in-
cludes U1, U2 as well as 49 additional independent N (0, 1)
random variables. In our simulation, ρ is set to 0.7 and
β = δY

1 = δY
2 = 0.1. We generated 500 data sets. For each, we

calculated the maximum likelihood estimate (MLE) of β from
the true model and compared it with the estimates from six
estimation methods: BAC, TBAC, CDP, FBMA, NBMA, and
stepwise selection. The results are summarized in Table 3.

Unless noted, BAC and TBAC will refer to the special case
of ω = ∞ in the rest of this section. BAC, TBAC, and CDP
produce very similar estimates, both close to the estimates
obtained from the true model. All these methods have point
estimates around 0.1, the true value of β. Their MSEs are
also similar to each other. In contrast, the mean of point es-
timates based on FBMA are much larger than 0.1, indicating
that FBMA systematically overestimates the exposure effect
in this example. The MSE of FBMA is also higher. The mean
of point estimates based on NBMA is 0.091, which is close
to the means from BAC and TBAC. Despite this good aver-
age behavior, NBMA produces the worst results. The MSE of

NBMA is 0.006, which is much higher than 0.002 for BAC and
TBAC. The distribution of the point estimates from NBMA
reveals why NBMA has small bias and large MSE: whereas it
is centered roughly around the true value, this value falls in
a region of low mass. Thus, NBMA rarely provides an esti-
mate close to the true value, even though the average of the
point estimates across data sets is close. The point estimates
based on the stepwise method are systematically larger than
0.1. The MSE is higher than that of the true model.

The difference between BAC, TBAC, and CDP on one side,
and BMA and stepwise approaches on the other is even more
pronounced when comparing CIs or credible intervals (both
referred to as CI for brevity). The coverage probabilities of
95% CIs based on BAC, TBAC, and CDP are close to 0.95,
the desired value. In contrast, the coverage probabilities of
FBMA and NMBA are only 0.78 and 0.72, respectively.

It is interesting to investigate the impact of the depen-
dence parameter, ω, on confounding adjustment in BAC and
TBAC. As ω decreases from ∞ to 2, the connection between
exposure model and outcome model becomes weaker. The es-
timates, therefore, become closer to those from BMA. The
biases increase from 0.000 to 0.034, the MSEs increase from
0.002 to 0.004, and the coverage probabilities drop from 0.94
to 0.84 in BAC and from 0.95 to 0.84 in TBAC. The results
show that ω controls the degree of confounding adjustment,
with ω = ∞ providing the fullest adjustment in this scenario.

Our second simulation scenario considers a larger number
of potential confounders that are correlated with the expo-
sure and also with the outcome. We consider both variables
that are strongly and weakly correlated with exposure, and
assume the following true outcome model: Yi = βXi + δY

1 U1i

+ · · · + δY
14U14i + εY

i , where i = 1, . . . , 1000, εY
i are indepen-

dent N (0, 1), and (Xi , U1i , . . . , U7i ) are independent nor-
mal vectors with mean zero and a covariance matrix, Σ =
(σk l )8×8, where σk l = 1 if k = l or σk l = ρk+l−2 if k 
= l,
1 ≤ k, l ≤ 8. We also assume that the U8i , . . . , U14i indepen-
dently follow N (0, 1) distribution and are independent of
(X i , U 1i , . . . , U 7i ). The set of potential confounders U in-
cludes U1, . . . , U14 as well as 43 additional independent N (0, 1)
random variables that are independent with both X and
Y . In our simulation, β is set to 0.1, δ1 = · · · = δ14 = 0.1
and ρ = 0.7. Similarly to the first scenario, we generated
500 data sets. For each simulated data set, we calculated
the MLE of β from the known true model and compared it
to the estimates from the six methods: BAC, TBAC, CDP,
FBMA, NBMA, and stepwise. The results are summarized in
Table 4.

The differences we noted between BAC, TBAC, and CDP
on one side, and BMA and stepwise on the other, are even
more pronounced in this more complex example. The point
estimate obtained using FBMA is biased and larger than the
point estimate based on the true model. The coverage prob-
abilities of 95% CIs are only 0.55 and 0.63 for FBMA and
NBMA, respectively. The point estimate using the stepwise
method is also biased. The coverage probability is only 0.66.
In contrast, the point estimates based on BAC, TBAC, and
CDP are close to those based on the true model, and the
coverage probabilities are very close to the desired value. The
choice of ω in the priors of BAC and TBAC has a pronounced
effect on the estimates. When ω decreases from ∞ to 2, the
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Table 4
Comparison of estimates of β from six methods, along with

the gold standard (true model) in the second simulation
scenario. For BAC and TBAC, φ is set to 2.85. For FBMA,

several different φs are considered

Method BIAS SEE SSE MSE CP

True model 0.000 0.051 0.049 0.002 0.96
BAC ω = ∞ 0.009 0.051 0.050 0.003 0.96

ω = 10 0.045 0.055 0.058 0.005 0.84
ω = 4 0.064 0.055 0.061 0.008 0.75
ω = 2 0.080 0.055 0.062 0.010 0.64

TBAC ω = ∞ 0.006 0.051 0.050 0.003 0.97
ω = 10 0.043 0.055 0.058 0.005 0.85
ω = 4 0.062 0.055 0.060 0.007 0.76
ω = 2 0.078 0.055 0.061 0.010 0.66

CDP 0.000 0.051 0.048 0.002 0.97
FBMA φ = 2.85 0.097 0.054 0.061 0.013 0.55

φ = 1.05 0.070 0.055 0.060 0.009 0.70
φ = 0.30 0.039 0.053 0.055 0.005 0.87
φ = 0.10 0.019 0.046 0.039 0.002 0.96

NBMA 0.056 0.064 0.096 0.012 0.63
Stepwise 0.044 0.043 0.067 0.006 0.66

coverage probability drops from 0.96 to 0.64 in BAC and 0.97
to 0.66 in TBAC.

The performance of BMA depends strongly on the spread
of prior. For the Normal-Gamma prior we considered, the
spread can be controlled by hyperparameter, φ. Following the
recommendation by Raftery et al. (1997), we chose φ = 2.85

for BAC, TBAC, and BMA in all the examples in this arti-
cle. This prior is quite spread with 95% of the mass between
−5.27 and 5.27. The FBMA estimate under this prior is signif-
icantly biased. But the performance of FBMA improves when
a more concentrated prior with smaller φ is used. Table 4 lists
the estimates of FBMA based on different values of φ. When
φ = 0.1, with 95% of the mass between −0.19 and 0.19, the
FBMA estimates are as good as those based on BAC and
TBAC. This suggests that strong prior information, concen-
trating in the region of the true value, is required for FBMA
to have good performance. In contrast, BAC and TBAC pro-
vide reasonable estimates even under the most spread prior
φ = 2.85. This shows that strong prior information is not a
requisite for Bayesian approaches for effect estimation as long
as appropriate methods are applied.

We also computed the posterior inclusion probability
(Barbieri and Berger, 2004) defined, for the mth confounder,
as pm =

∑
αY :α Y

m =1 P (αY |D), which is estimated by the pro-
portion of appearances of confounder m in the chain of out-
come models. Figure 2 shows the estimated posterior inclusion
probabilities for all the confounders, in a simulated data set
from our second scenario, using TBAC. The first seven con-
founders have high posterior inclusion probability, indicating
that they are important for estimating the exposure effect β.
This is consistent with their high correlation with X .

4.1 Additional Simulations
In Web Appendix B, we describe simulations designed to eval-
uate and compare the performance of BAC priors with differ-
ent ω’s in the presence of predictors correlated with X but not
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Figure 2. Posterior inclusion probability of potential confounders, separated into three groups by two vertical dashed lines.
The first seven (group A) are in the true model and are correlated with X , the next seven (group B) are in the true model
but are independent of X , the rest (group C) are not in the true model and are independent of X .
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with Y. These predictors are not confounders because they
are not associated with Y given X. Including them in the
outcome model will not help for confounding adjustment and
may decrease the efficiency of effect estimation. We found that
using ω = 10 yields smaller MSE compared to ω = ∞. This
is because ω = 10 gives a nonzero probability for a predic-
tor included in the exposure model not to be included in the
outcome model. In other words, this prior is able to exclude
a predictor of X from the outcome model if that predictor is
not correlated with Y. Therefore, in the presence of predictors
only correlated with X but not with Y, a prior using a finite
ω tends to have higher efficiency than ω = ∞.

In Web Appendix C, we describe simulations designed to
evaluate the performance of BAC and TBAC when the ex-
posure model is misspecified. A disadvantage with BAC and
TBAC is that they require two models, whereas BMA only
requires one. However, in our context, this does not come nec-
essarily with an increased risk of model misspecification. Our
simulation results show that both BAC and TBAC are robust
to misspecification of the exposure model. The key feature in
confounding adjustment is to include a sufficient number of
confounders. A roughly correct exposure model may often be
enough to ensure that this happens.

In Web Appendix D, we describe simulations designed to
compare BAC to TBAC when ω = ∞. We found that the two
methods behave similarly in the majority of the cases exam-
ined here. However, they show some differences when deal-
ing with predictors weakly associated with both X and Y .
Compared to TBAC, BAC assigns lower weights to models
that include those predictors. As a result, the two methods
give somewhat different posterior distributions of αX and αY.
But because these predictors have limited impact on the esti-
mation of the exposure effect, they still provide very similar
exposure effect estimates.

In Web Appendix E, we provided simulation results to com-
pare BAC and TBAC with BMA under the two simulation
scenarios described in this section but with a smaller sample
size of 100. We found that the MSE from BMA is smaller than
that from BAC and TBAC in the first scenario, but is larger in
the second scenario. The results indicate that, although BAC
and TBAC in general perform better, BMA may sometimes
yield smaller MSE when the sample size is small. Combined
with results from Web Appendix B, we conclude that there
is not a single value of ω that is uniformly optimal in terms
of MSE. The choice of ω should depend on sample size, com-
plexity of confounding structure, as well as the bias/variance
trade off. And the prior with ω = ∞ is usually conservative,
which provides unbiased estimates.

5. Air Pollution Example
In air pollution epidemiology, adjusting for confounding bias
is probably the biggest challenge when estimating a small
health effect associated with exposure to an environmental
contaminant. In addition, because of the heavy policy impli-
cations associated with the public health impact of air pollu-
tion, most of the epidemiological evidence has been severely
challenged by the threat of confounding bias.

In this section, we apply the newly proposed methods
(BAC, TBAC) to daily time series data for Nassau County,

NY for the period 1999–2005. Although this data analysis
is mainly used as an illustration of our newly proposed ap-
proach, the results clearly illustrate the potential application
and impact of BAC and TBAC in epidemiology studies of
observational data. The data include 1532 daily records of
emergency hospital admissions, weather variables, and PM2.5

levels. A more extensive description of this data set can be
found in Dominici et al. (2006). The goal is to estimate the
increase in the rate of hospitalizations for cardiovascular dis-
ease (CVD) associated with a 10 μg/m3 increase in PM2.5,
while accounting for age-specific longer-term trends, weather
and day of the week. The hospitalization rate is calculated
separately for each age group (≥75 or not) on each day. In
our model, to control for longer-term trends due, for exam-
ple, to changes in medical practice patterns, seasonality, and
influenza epidemics, we include smooth functions of calendar
time. We also include a smooth function to allow seasonal
variations to be different in the two age groups. To control
for the weather effect, we include smooth functions of tem-
perature and dew point. To start, we consider a full model
that is large enough to include all the necessary confounders
(Dominici et al., 2000, 2004; Peng et al., 2006),

Yat = β PM2.5t + DOW + intercept for age group a

+ ns(Tempt , dfTemp) + ns(Tempt1−3, dfTemp)

+ ns(Dew, dfDew) + ns(Dewt1−3, dfDew) + ns(t, dft )

+ ns(t, dfa t ) × age group + εt ,

where the outcome
Yat =

√
CVD hospital admissions/size of population at risk

for each age group a (≥75 or not) on day t(= 1, . . . , 1532).
PM2.5t denotes the level of particulate matter having diame-
ter less than 2.5 μm on day t. DOW are indicator variables
for the day of the week. Tempt and Tempt1−3 are the temper-
ature on day t and the three-day running mean, respectively.
Dewt and Dewt1−3 are the dew point on day t and the 3-day
running mean. The quantity ns(., df ) is a natural cubic
spline with df degrees of freedom. We include ns(t, dft ),
ns(Tempt , dfTemp), ns(Tempt1−3, dfTemp), ns(Dew, dfDew), and
ns(Dewt1−3, dfDew) to adjust for the potential nonlinear
confounding effects of seasonal variations, temperature and
dew point. The quantity ns(t, dfa t ) × age group is a natural
cubic spline of t for the ≥ 75 age group to allow its seasonal
variation to be different from the other age group. Similar
to Crainiceanu et al. (2008), dfTemp is set to 12, dfDew is set
to 12, dft is set to 16 per year, and dfat is set to 4. These
degrees of freedom are considered sufficiently large for the full
model to include all the potential confounders (Crainiceanu
et al., 2008). The residuals εt are assumed to be independent
and identically distributed with a normal N (0, σ2) distri-
bution. After dropping some potential confounders due to
collinearity, we work with a set of 164 potential confounders.

We consider six approaches: BAC, TBAC, CDP, FBMA,
NBMA, and stepwise. For BAC and TBAC, we consider priors
with ω = 2, 4, 10, or ∞. The estimated PM2.5 effect (×10, 000)
denoted by β̂ is listed in Table 5: BAC, TBAC (with ω = ∞)
and CDP provide estimates of the short-term effect of PM2.5

on CVD hospital admissions with 95% CIs that do not include
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Table 5
Comparison of estimates of PM2.5 effect on CVD

hospitalization rate based on BAC, TBAC, CDP, FBMA,
NBMA, stepwise, and the full model

Method β̂ SE(β̂) 95% CI

Full model 0.291 0.092 (0.110, 0.471)
BAC ω = ∞ 0.226 0.081 (0.067, 0.385)

ω = 10 0.217 0.079 (0.060, 0.371)
ω = 4 0.186 0.085 (0.019, 0.351)
ω = 2 0.155 0.079 (0.007, 0.317)

TBAC ω = ∞ 0.229 0.083 (0.071, 0.403)
ω = 10 0.216 0.075 (0.071, 0.367)
ω = 4 0.190 0.080 (0.035, 0.347)
ω = 2 0.155 0.077 (0.010, 0.313)

CDP 0.221 0.089 (0.045, 0.396)
FBMA 0.140 0.077 (−0.008, 0.298)
NBMA 0.007 0.033 (0.000, 0.131)
Stepwise 0.106 0.066 (−0.023, 0.234)

0. With ω = ∞, both BAC and TBAC provide similar esti-
mates of the exposure effect as CDP. Moreover, all three meth-
ods provide smaller standard errors than the one obtained
under the full model. In comparison, FBMA and NBMA pro-
vide a very different and not statistically significant estimate
of the exposure effect. Some confounders known to be impor-
tant, such as temperature and dew point, are downweighted
in BMA. Both temperature and dew point are positively cor-
related with PM2.5 and negatively correlated with hospital-
ization rate. Failure to include them in the model diminishes
the PM2.5 effect. This illustrates that in practical applications
BMA and BAC can lead to different conclusions. The key
difference lies in the linking strength between the expo-
sure model and the outcome model. As the strength de-
creases, which corresponds to smaller value of ω, the esti-
mates from BAC and TBAC become closer to that from
BMA.

6. Discussion
Estimating an exposure effect, while accounting for the un-
certainty in the adjustment for confounding, is of essential
importance in observational studies. Building upon work by
Dominici et al. (2004) and Crainiceanu et al. (2008), in this
article, we develop Bayesian solutions to the estimation of
the association between X and Y accounting for the uncer-
tainty in the confounding adjustment. Given a set of poten-
tial confounders, we simultaneously address model selection
for both the outcome and the exposure. Although we dis-
cuss our methods in the setting of linear models, BAC and
TBAC are general concepts and are not constrained to the
linear case. For example, they can be extended to generalized
linear models using relatively well understood computational
strategies.

Like BMA, BAC, and TBAC take a weighted average over
models rather than making inference based on a single model.
However, they attempt to provide an estimate of the exposure

effect by combining information across regression models that
include all the requisite confounders, to ensure that the regres-
sion coefficient of interest maintains the same interpretation
across models. A nice feature of BMA that is retained by
BAC and TBAC is that the importance of confounders can
be evaluated based on posterior inclusion probability. This
information may reveal underlying connections between ex-
posure and confounders, which may become of interest for
future research. BAC and TBAC are more computationally
intensive than BMA.

Successful application of BAC and TBAC rely on avail-
ability of all confounders. Scientific knowledge is required to
ensure that these assumptions are valid. Statistical meth-
ods may also help to check whether there is evidence for
the existence of unmeasured confounders. For example, one
can decompose the association between exposure and out-
come into distinct spatio-temporal scales and check for the
consistency in the estimation of exposure effect across these
spatio-temporal scales (Janes, Dominici, and Zeger, 2007).

If there are no unmeasured confounders, the full model,
that is the model including all variables correlated with X and
Y, those correlated with Y only, as well as potentially others
that are not associated with either, will provide unbiased es-
timates of the exposure effect. However, using the full model
will generally yield wider CIs compared to BAC and TBAC.
By combining estimations from different smaller models, espe-
cially from models that only include requisite confounders but
do not include many unnecessary variables, BAC and TBAC
can provide more precise inference than the full model.

TBAC parallels CDP in its two-stage structure, and in the
inclusion of variables selected from the exposure model into
the outcome model. However, there are also important dif-
ferences. TBAC provides a model-based solution rather than
a partially algorithmic one, and also arguably considers un-
certainty more fully in a Bayesian framework. BAC further
takes into account the feedback effect and considers a full
Bayesian approach. Also, in CDP, models are evaluated based
on the change in deviance between sets of increasing dimen-
sionality, a criterion that could lead to different conclusions
compared to BAC and TBAC. Large spaces of confounders
may potentially be required for CDP users to reliably observe
the stabilization of the estimated effect that is required for
the method to succeed. However, no restrictions on dimen-
sionality apply to BAC and TBAC. Computationally, CDP is
clearly faster, and also offers helpful visualizations. The two
methods produce results with similar frequentist properties in
our simulation studies.

In the propensity score literature, it is recommended to in-
clude variables that are strongly correlated with Y but only
weakly correlated with X into the model for calculating the
propensity score, as the bias resulting from their exclusion
would dominate any loss of efficiency in modest or large stud-
ies (Rubin, 1997; Brookhart et al., 2006). One of the strengths
of our method, shared by others such as doubly robust esti-
mation (Scharfstein, Rotnitzky, and Robins, 1999), is that we
can identify these in a data-based way, rather than having
to rely on prior knowledge as required in propensity score
adjustment.
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An alternative Bayesian variable selection approach is the
Bayesian lasso (Park and Casella, 2008), assuming a mixture
prior of a point mass at zero and a double exponential distri-
bution for regression coefficients (Hans, 2010). An alternative
version of both BAC and TBAC could be constructed using
this prior instead. We expect that the use of the Bayesian
lasso on the outcome model alone would present similar lim-
itations to traditional BMA, but have not explored this in
detail.

In summary, in this article, we have motivated, defined, and
evaluated a tool for accounting for uncertainty in the selec-
tion of confounders in effect estimation. Our approach adopts
the fully probabilistic structure of BMA, without suffering
from the pitfalls we highlighted in traditional BMA imple-
mentations, and is likely to contribute to a more reasoned
and quantitative approach to the specification of models used
to determine health effects of common exposures, and the re-
porting of the associated uncertainty.

7. Supplementary Materials
Web Appendices referenced in Sections 2 and 4 are avail-
able under the article Information link at the Biomet-
rics website http://www.biometrics.tibs.org. An R pack-
age implementing BAC and TBAC is available at http://

sweb.uky.edu/∼cwa236/BEAU/.
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1. Analyses that Inform Policy Decisions are,
de Facto, Causal

We begin by thanking the Co-Editor, David Zucker, for
inviting our discussion of Wang, Parmigiani, and Dominici
(2012; hereafter WPD), which describes methodology to esti-
mate, using their example, the association between contami-
nants and hospitalization rates, controlling for “confounders.”
Our view is that, to inform “major policy-related decisions”
(WPD, Section 1), as they describe in their example, it is im-
perative that the goal is to estimate the effect of intervening
to reduce contamination on health-related outcomes; that is,
the goal must be to estimate the causal effects of different
levels of pollution on outcomes. Yet in Section 1, WPD claim
that their analysis does not follow a “causal inference perspec-
tive” and that their methodology only estimates the associa-
tion between contaminant levels and health-related outcomes,
“controlling for confounders.” However, if the analysis is not
causal, and only descriptive, the meaning of “confounders” is
baffling to us.

It is our interpretation, because of repeated references to
policy implications and uses of the phrase “controlling for
confounders,” that WPD intends to provide an analysis to es-
timate causal effects and not merely to estimate associations.
As such, our comment will be on the basis of a causal infer-
ence perspective, which we summarize in Section 2. Then in
Section 3, we embed WPD’s approach within this causal in-
ference framework, explicating assumptions that are needed
for this embedding. Section 4 presents simple simulations and
conclusions.

2. The RCM Framework
A commonly used causal inference framework was partially in-
troduced by Neyman (1923) in the context of randomization-
based inference in randomized experiments; Rubin (1974,
1975, 1978) later developed and extended the framework to
include observational studies and Bayesian inference. The
resulting framework, often called “Rubin’s Causal Model”
(RCM Holland, 1986), comprises three main parts: the use
of potential outcomes to define causal effects, the explication
of an Assignment Mechanism (AM—a term coined in Rubin,
1975), and a (Bayesian) model of the “science.” For simplicity
of exposition, we only deal with situations where the units,

indexed by i, i = 1, . . . , N , are modeled as independent given
parameters, as in WPD, but we note that this assumption is
not innocuous when units are correlated (e.g., represent suc-
cessive days, as in WPD’s example). We try to follow both
WPD’s notation and example to ease communication.

Suppose there are D + 1 possible treatment levels (e.g.,
levels of pollution) indicated by Xi ∈ {0, . . . , D}. Unit i has
D + 1 potential outcomes: Yi (0), . . . , Yi (D), representing, in
the WPD example, the hospitalization rates when exposed to
each of the possible treatment levels, all at the same time af-
ter treatment. A common estimand, and one that is related to
WPD’s estimand, is the average treatment effect, across all N
units, obtained by moving from level X = d2 to level X = d1:

β(d1, d2) =
1
N

N∑
i=1

[Yi (d1) − Yi (d2)]. (1)

No β(d1, d2) can be observed because, in all real life studies,
we can only observe one of the potential outcomes for each
unit: this is the fundamental problem facing causal inference
(Rubin, 1978).

The only way to overcome this problem is to collect data
on different units assigned to different treatments. But when
comparing observed potential outcomes across units, we must
consider the distribution of pretreatment characteristics (i.e.,
covariates Ui ) in groups of units treated differently. The key
piece of information that is needed is how each unit received
the treatment level it actually received: In the RCM language,
we need a model for the AM: P (Xi | Ui , Yi (0), . . . , Yi (D), φ),
where φ is a vector parameter governing this distribution.

In general, we would like the AM to generate assignments,
that given the covariates, Ui , do not depend on the potential
outcomes, so that the AM is unconfounded (Rubin, 1990).
For example, if we could randomize the pollution levels to
different units, perhaps with probabilities that depend on the
Ui , the AM would be unconfounded, or more formally:

P (Xi = d | Ui , Yi (0), . . . , Yi (D), φ)

= P (Xi = d | Ui , φ) i = 1, . . . , N ; d = 1, . . . , D. (2)

Suppose the AM is unconfounded; also suppose that the num-
ber of observed units with covariate value Ui = u that received
treatment d, N(u ,d ), is positive for all d and all u such that
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p(u), the proportion of units in the population with covariate
value Ui = u, is positive. Then β(d1, d2), can be unbiasedly
estimated by∑

u

p(u)

[
1

N(u ,d1)

∑
U i =u

Yi (d1) − 1
N(u ,d2)

∑
U i =u

Yi (d2)

]
. (3)

In the case of completely randomized experiments, we can es-
timate that N(u ,d ) =̇ Nd , because the distribution of U in all
treatment groups is the same in expectation. Without com-
plete randomization, the distribution of U is not necessarily
similar in the different treatment groups, and the treatment
effect needs to be estimated with appropriate care (for exam-
ple, by appropriately using propensity score subclassification
or matching to balance the distributions of U across treatment
groups). Otherwise, the resulting estimate may be badly bi-
ased, as illustrated by the simulations in our Section 4.

The third part of the RCM framework incorporates a
(Bayesian) model that describes the distribution of the “sci-
ence,” or in other words, a model that attempts to approx-
imate the joint distribution of the potential outcomes and
the covariates, P (Yi (0), . . . , Yi (D), Ui | θ), where θ is a vec-
tor parameter governing this distribution; commonly, θ and φ
are chosen to be distinct (Rubin, 1976). This model, together
with the AM, generates a model for all possible observed
values, (Xi , Ui , Yi (0), . . . , Yi (D) | φ, θ), given the parameters,
where for Bayesian inference the parameters are given a prior
distribution.

In our view, the most effective way to generate causal in-
ferences for quantities like β(d1, d2) is to condition on all ob-
served values and multiply impute the unobserved potential
outcomes, as explicated in Section 4.5 of Rubin (2008) and
briefly illustrated in our Section 4.

3. Implicit Assumptions Made by WPD
for Policy-Relevant Conclusions

The first model described by WPD is:

E(Xi | Ui , φ) =
M∑
i=1

δX
m Uim , (4)

where for notational convenience we suppress their use of α,
N is effectively infinite, and we use our notation for param-
eters on the left-hand side. This model (WPD’s “exposure
model”) describes the expectation of the treatment for unit i
given the covariates, or in our terminology, the model for the
AM after making the unconfoundedness assumption implic-
itly: Equation (4) does not depend on the potential outcomes,
and therefore conforms to our assumption (2).

The second model (WPD’s “outcome model”), our equa-
tion (5) below, which again uses our notation for parameters
on the left-hand side, describes the expectation of the ob-
served outcome for unit i when receiving treatment level Xi ,
that is Yi (Xi ), given Ui and parameters

E(Yi (Xi ) | Ui , θ, φ) = βXi +
M∑
i=1

δY
m Uim . (5)

Model (5) in general includes the effect of the AM, because
it involves the observed potential outcomes, Yi (Xi ), which

depend on the AM; here, the implicit assumption again is
unconfoundedness. Also, model (5) explicitly describes only
part of the science, because it only specifies how hospitaliza-
tion rates vary with each level of the treatment (pollution lev-
els) given the covariates; missing from this formulation, and
thus implicitly assumed to be irrelevant, is the model for the
marginal distribution of the covariates. This latter model is
of potential interest, when, for example, the interventions are
to be implemented in different areas with different covariate
distributions, or when the covariates involve previous pollu-
tion levels, as would occur in a time series model (see, e.g.,
discussion in Section 4.4 of Rubin, 2008).

WPD defines the treatment effect of X on Y as β in equa-
tion (5), so that in our causal notation, β(d1, d2) is assumed to
equal β for all levels that differ by one unit of measurement.
From a policy-relevant perspective, this definition is only use-
ful when the regression model (5) is approximately true. For
example, if we assume that the true model for Yi (X) given Ui

is inverse logistic, then for high and low levels of pollution,
small changes in pollution levels would have little effect on
the outcomes, whereas for medium levels of pollution, small
changes could have large effects. In our experience, we never
know the true physical model for the science. Thus, it is dif-
ficult to interpret definitions of treatment effects unless they
are based on the underlying potential outcomes, because “re-
gression coefficients may have a different interpretation across
models” (WPD, Section 1).

In the next section, we summarize a small simulation that
illustrates the behavior of WPD’s methodology, as well as
two other methodologies, when used for estimating causal ef-
fects. Our conclusion is that WPD’s methodology may result
in misleading estimates of policy-relevant effects, because of
inappropriate adjustment for confounders, relative to more
robust alternatives based on the explicit multiple imputation
of missing potential outcomes.

4. Simulation
For simplicity, we assume that the treatment factor has only
two levels: Xi = 0—low pollution, and Xi = 1—high pollu-
tion. We also assume that there exists only one confounder,
Ui , whose distributions can differ in the two treatment groups:
In the control group Ui is Normal(0,1) and in the treatment

group Ui is Normal (B
√

1+σ 2

2 , σ2), where σ2 is the ratio of
variances in the two distributions, and B is the standardized
initial bias. We also assume that we have a sample of n units
from the high pollution level, and a sample of n units from
the low pollution level, both from a population of size N = ∞.
The potential outcomes, Yi (0), Yi (1), are the hospital admis-
sion rates for unit i, with low and high pollution, which have
distributions that depend on Ui . The assignment of Xi is un-
confounded: Ui is the only relevant covariate and is observed
for all 2n units. We allow for nonparallel response surfaces at
the two levels of pollution:

Yi (0) | Ui , θ0 =
1

1 + exp(−[Ui + U 2
i − 3])

and

Yi (1) | Ui , θ1 =
1

1 + exp(−[Ui − 1])
, (6)
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where Yi (0) and Yi (1) are conditionally independent given Ui .
The estimand is the population average treatment effect from
moving from the high pollution level to the low pollution level,
τ ≡ β(0, 1) defined in our (1).

We assess the frequentist operating characteristics of
three estimation procedures at 4 × 4 × 3 different configu-
rations: σ2 ∈ {0.5, 1, 2, 4} × B ∈ {0, 0.25, 0.5, 1, 2} × n ∈ {600,
1200, 2400}. The first procedure is the simple difference in
observed means. The second procedure uses a model, approx-
imating WPD’s procedure:

E(Yi (Xi ) | Ui , θ) = βXi + ns(Ui , 15), (7)

where ns is the natural cubic spline with 15 df. The third
procedure is based on the ideas presented at the end of our
Section 2, and is the main part of a recent Ph.D. thesis (Gut-
man, 2011), summarized in the following nine steps.

1 Discard units in the treatment and control groups that
have no close Ui match in the other group.

2 Partition the remaining units into six subclasses such
that there are at least three units from each treatment
group in each of the subclasses, and the distributions
of Ui in each subclass are similar in the control and
treatment groups.

3 From observed data, estimate E(Yi (Xi ) | Ui , θ) =
hX i

(Ui | θX i
) independently in each treatment group,

Xi = 0, 1, using a regression spline with seven knots lo-
cated at the borders of the subclasses; the location of
the knots is selected, by Step 2, so that the distribu-
tion of Ui in each subclass is similar in the control and
treatment groups.

4 Draw the vector parameters θX i
(Xi ∈ {0, 1}) from in-

dependent posterior distributions.
5 Using the drawn value of θX i

(Xi ∈ {0, 1}), indepen-
dently impute the missing potential outcomes in the
treatment group, the Yi (0) with Xi = 1, and in the con-
trol group, the Yi (1) with Xi = 0.

6 Repeat steps 4 and 5, M = 20 times.
7 Estimate the treatment effect τ and its sampling vari-

ance in each of the imputed datasets; from imputed
dataset m; let τ̂m be the estimated treatment effect, and
let Ŵm = var(τ̂m ) be its estimated sampling variance,
m = 1, . . . , M .

8 Estimate the average treatment effect by
τ̂ = 1

M

∑M

m =1 τ̂m and its standard error by√
1

M −1

∑M

m =1(τ̂m − τ̂ )2 + 1
M

∑M

m =1 Ŵm . This com-
bining rule is known as Rubin’s Rule for MI (Rubin,
1987).

9 Calculate the interval estimate for τ , using the t approx-
imation for the interval given by Barnard and Rubin
(1999).

We drew 1000 replications at each configuration of σ2, B,
n, and recorded whether the resulting 95% interval covered
the treatment effect, the size of the bias, and the root mean
square error (RMSE).

When B = 0, σ2 = 1, and for all sample sizes, the observed
coverage for the simple difference in means was 95%, which
was expected because with this configuration, Ui is indepen-
dent of the treatment assignment Xi , and thus the situation

Table 1
95% Interval coverage rate, bias and RMSE n = 600; cubic

spline model (7)

σ2 B 0 0.25 0.5 1 2

0.5 Coverage 0.05 0.04 0.01 0.00 0.00
Abs. Bias 14.00 14.35 16.46 30.00 63.14
RMSE 14.45 14.80 16.88 30.33 63.38

1 Coverage 0.93 0.80 0.28 0.00 0.00
Abs. Bias 0.84 4.23 12.25 39.58 69.57
RMSE 6.56 7.54 13.29 39.85 69.78

2 Coverage 0.11 0.25 0.13 0.00 0.00
Abs. Bias 18.96 15.42 19.18 36.65 59.91
RMSE 19.89 16.64 20.07 37.04 60.16

4 Coverage 0.00 0.00 0.00 0.01 0.05
Abs. Bias 57.48 46.27 37.02 36.64 34.73
RMSE 57.79 46.66 37.53 37.14 35.34

Absolute Bias and RMSE are in 10−3.

Table 2
95% interval coverage rate, bias and RMSE n = 600; multiple

imputation

σ2 B 0 0.25 0.5 1 2

0.5 Coverage 0.97 0.96 0.94 0.96 0.98
Abs. Bias 1.05 0.89 0.92 0.40 0.44
RMSE 5.00 4.98 5.16 6.11 8.77

1 Coverage 0.94 0.96 0.95 0.96 0.96
Abs. Bias 0.88 0.64 0.74 0.86 0.93
RMSE 6.51 6.24 6.31 6.72 8.46

2 Coverage 0.93 0.95 0.96 0.93 0.95
Abs. Bias 0.89 0.79 0.91 2.21 2.44
RMSE 8.10 7.60 7.43 7.93 8.47

4 Coverage 0.95 0.96 0.96 0.94 0.92
Abs. Bias 0.56 0.95 1.04 1.70 2.02
RMSE 9.37 8.83 8.45 8.57 9.10

Absolute Bias and RMSE are in 10−3.

does not require any form of adjustment, even though Ui

influences the outcome; this configuration corresponds to a
completely randomized experiment. When B 
= 0 or σ2 
= 1,
the coverage rates for the observed difference in means were
0% for all sample sizes, which is not surprising because in
those configurations, Xi is dependent of Ui , which implies
initial bias due to Ui , which requires adjustment to estimate
the treatment effect without substantial bias.

Table 1 displays the results with n = 600 when using the
least squares estimate of β from (7). The only configuration
for which adjusting for the covariate using (7) results in cover-
age close to the nominal level occurs when B = 0 and σ2 = 1,
or in other words, when Xi and Ui are independent. Such re-
sults are true for larger samples as well. The results are not
surprising because of differences in the distributions of the co-
variate in the control and treated groups, and because we do
not know the “true” response surfaces. This phenomenon has
been described since Cochran (1968) for a single covariate,
and repeatedly in the collection by Rubin (2006) for single
and multiple covariates.

Table 2 displays the results with n = 600 for our proposed
multiple imputation procedure, and shows that the coverage
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rates are close to the nominal level; this conclusion is gen-
erally maintained for larger sample sizes as well. Moreover,
this method obtains close to the correct coverage by having
smaller bias and smaller mean square error than model (7),
not by increasing the widths of intervals.

A possible criticism of our simulation is that we did not in-
clude an interaction of exposure by confounder term in model
(7). Our response to this has four parts. First, the number
of parameters estimated in model (7) is 18, consisting of an
intercept, a treatment indicator, 15 df for the spline, and the
residuals’ variance. With our proposed procedure, we used 16
parameters consisting of an intercept, 6 df for the spline, and
the residuals’ variance, in each of the treatment groups. Thus,
the total number of parameters is similar in both procedures.

Second, there are many ways to incorporate an interaction
between the exposure and the confounder, for example, by
adding the term Xi × Ui , or the term Xi × ns(Ui , df ). Incor-
porating either of these terms results in models with different
numbers of parameters, different estimated treatment effects,
and different interpretations of the parameters. The choice
of which model to use is not described in WPD. Moreover, if
those interactions are considered as additional possible covari-
ates, there is always a positive probability that they will not
be selected into the outcome model by WPD’s methodology.

Third, the inclusion of an interaction term in WPD’s
methodology was discussed very briefly, only stating that
when an interaction of an exposure by confounder term is
included in the model, the resulting estimand comprises a
vector parameter, which includes the coefficients of the treat-
ment indicator and the coefficients of the interaction. From
this statement, it is unclear whether WPD would intend to
estimate quantities such as β(0, 1). In any case, they do not
provide any methodology to obtain an estimate or a standard
error for any such quantity.

Fourth, we added an estimation method based on a model
that includes an interaction:

E(Yi (Xi ) | Ui , θ) = βXi + ns(Ui , 8) + βin tXins(Ui , 8), (8)

with 8 df. Because WPD did not provide a methodology to
estimate β(0, 1), we chose to use a Bayesian approach that
draws samples from the posterior predictive distribution of
β(0, 1) to obtain a 95% interval. Table 3 shows that model
(8) has better coverage rates than model (7), but the former
could perform as badly as the latter when σ2 and B are large.
Moreover, the bias and RMSE obtained using method (8) is
much larger than using either model (7) or our methodology.

In our simulation, it is possible that the control group and
treatment group will have ranges of covariate values that do
not overlap. The WPD methodology and the multiple impu-
tation methodology handle such situations in different ways.
WPD’s approach effectively extrapolates to estimate the av-
erage treatment effect for the full range of covariate values
observed in either sample, whereas our methodology discards
the nonoverlapping observations, and thereby changes the es-
timand to be the average treatment effect for values of the
covariate where there is overlap. The bias, MSE, and cover-
age of the two procedures are calculated for the estimand that
the procedure is trying to estimate. Admittedly, our estimand
is generally easier to estimate than WPD’s estimand, which
we view as generally impossible to estimate without making

Table 3
95% interval coverage rate, bias and RMSE n = 600; model (8)

σ2 B 0 0.25 0.5 1 2

0.5 Coverage 1 1 1 1 1
Abs. Bias 0.89 0.53 0.26 0.03 18.48
RMSE 31.82 27.38 23.06 21.05 1094.7

1 Coverage 1 1 1 1 0.81
Abs. Bias 24.68 19.91 17.69 20.79 62.12
RMSE 6.51 6.24 6.31 6.72 8.46

2 Coverage 0.99 1 0.89 0.79 0.63
Abs. Bias 3.19 3.53 10.20 19.09 2130.34
RMSE 17.64 15.68 20.54 28.63 2615.60

4 Coverage 0.58 0.51 0.27 0.09 0.01
Abs. Bias 11.87 32.26 69.43 159.00 19494.30
RMSE 27.18 41.98 73.99 161.71 22625.18

Absolute Bias and RMSE are in 10−3.

empirically unassailable assumptions, which if made, should
be clearly stated.

The results in the simulation support the conclusion that
methodologies similar to WPD’s for the estimation of causal
effects can have poor operating characteristics, even in very
simple settings with one confounder and a binary treatment.
As the number of confounders increases, these methodolo-
gies can perform even more poorly because initial bias in any
confounder will influence the estimation procedure. In addi-
tion, as the number of treatments increases, the probability of
overlap between all confounders for all treatments decreases,
typically resulting in higher probabilities of larger initial bias
across treatment groups.

Methods that do not work for a single covariate with a bi-
nary treatment cannot generally work for multiple covariates
and multiple treatments. The multiple imputation method
presented in this discussion to estimate causal effects is for
a single confounder, but this method can be generalized to
several covariates using subclassification and matching on
propensity scores (Rosenbaum and Rubin, 1983; Rubin and
Stuart, 2006; Rubin and Thomas, 1996) with similar conclu-
sions expected.

In summary, when we are interested in reaching conclu-
sions that have major policy implications, it is our view that
a causal framework must be used. We believe that typically
all covariates that may influence the outcome should be con-
sidered when estimating the assignment mechanism, and that
only after ensuring that we have similar distributions of the
covariates across treatment groups within subclasses, can a
statistically valid procedure be reliably implemented.
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1. Introduction
The problem of confounder selection is central to the analy-
sis of essentially all observational studies, yet it has received
remarkably little attention in the causal inference literature.
I congratulate Wang, Parmigiani, and Dominici—herafter re-
ferred to as WPD—for addressing this important problem and
making a very elegant proposal.

The problem of confounder selection differs from other co-
variate selection procedures in that confounders are, by defi-
nition, simultaneously associated with exposure and outcome.
Yet, by factorization of the observed data likelihood into the
outcome distribution (conditional on exposure and covari-
ates) and the exposure distribution (conditional on covari-
ates), standard procedures involve building models for these
separate distributions one at a time. Methods solely based
on outcome regression therefore have a tendency to ignore
potentially important confounders. Namely, those covariates
that are strongly associated with the exposure, but only mod-
erately with the outcome, risk being dismissed from the anal-
ysis model as a result of multicollinearity. This may result
in biased outcome regression analyses, which severely under-
state the actual uncertainty regarding the exposure’s effect.

In the causal inference literature, this problem has been mit-
igated through the development of propensity score methods
which explicitly incorporate the exposure distribution into the
analysis (Rosenbaum and Rubin, 1983). However, with few
exceptions (e.g., McCandless, Gustafson, and Austin, 2009),
these procedures also separate model building for the propen-
sity score from model building for the outcome. Contrary to
outcome regression methods, they thereby prioritize covari-
ates that are strongly associated with the exposure, regardless
of their association with the outcome. It has been shown that
this can result in inefficient inferences (Hahn, 2004). In addi-
tion, any bias in the exposure effect (e.g., because of unmea-
sured confounding, which is almost always present) gets am-
plified by the exposure’s variance inflation factor, which can
be sizable when the model includes strong predictors of the
exposure (Pearl, 2010; Vansteelandt, Bekaert, and Claeskens,
2012).

All the above arguments call for simultaneously selecting
covariates for inclusion in models for the outcome and expo-
sure distributions. The authors’ proposal prevents factoriza-
tion of the joint outcome and exposure distributions through
a prior dependence on the covariate inclusion probabilities. It
forms a promising step in this direction.
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2. How Does Bayesian Adjustment for Confounding
(BAC) Relate to Propensity Score Adjustment?

For ω = ∞, the proposed procedure imposes that covariates
appearing in the exposure model will also be included in the
outcome model, but allows for the outcome model to include
more. This is also characteristic of the frequentist approach
of Crainiceanu, Dominici, and Parmigiani (2008). Not sur-
prisingly, a similar performance is thus seen in the reported
simulation studies. One important difference is that the use
of model averaging may result in more honest descriptions of
the overall model uncertainty. A further potential difference
comes from the procedure’s a priori tendency to exclude co-
variates from the exposure model, which can be seen because
P (αX

m = 0) = 2/3 when ω = ∞. From a subjective Bayesian
viewpoint, P (αX

m = 0) ought to represent one’s prior beliefs.
Considering that in most practical applications all covariates
are—realistically seen—at least somewhat associated with the
exposure and that the decision to measure data on a specific
covariate in observational studies is often based on prior be-
lief that this covariate is jointly associated with exposure and
outcome, lower values of this probability could be desirable. In
particular, it seems more prudent to choose a maximum value
of P (αX

m = 0) = 1/2, which expresses a priori ignorance. For
this choice, one would obtain

P
(
αX

m = 1|αY
m = 0

)
P
(
αX

m = 0|αY
m = 0

) =
2

ω + 1
,
P
(
αX

m = 1|αY
m = 1

)
P
(
αX

m = 0|αY
m = 1

) =
2ω

ω + 1
.

It would be interesting to see how this (or related) modifica-
tion(s) might affect the performance of the proposed strategy,
especially in settings where various covariates are strongly
predictive of the exposure and only moderately predictive of
the outcome.

The approach of Crainiceanu et al. (2008), and thereby also
BAC at ω = ∞, has close connections with regression adjust-
ment for the propensity score. This is so, even though the
propensity score is usually defined for dichotomous exposures,
because the propensity score can be redefined to be the con-
ditional expectation of the exposure, given confounders, when
the interest lies in linear regression models for the outcome
(see e.g., Robins, Mark, and Newey, 1992). A common strat-
egy is then to build a propensity score model using standard
model building steps, and to subsequently regress the outcome
on the exposure, propensity score, and those covariates that
are most strongly associated with the outcome. Like BAC at
ω = ∞, this approach tends to adjust for all important pre-
dictors of the exposure (by the propensity score) to control
for confounding, and in addition adjusts for strong predictors
of the outcome to improve efficiency. It could nonetheless be
preferable to BAC. First, because all predictors of the ex-
posure are combined into a univariate propensity score, the
outcome regression model will likely become more parsimo-
nious. Second, unlike BAC, it entails a doubly robust proce-
dure (Robins et al., 1992), which yields consistent additive
exposure effect estimators when either the propensity score
model or the outcome regression model is correctly specified.
Alternatively, one may regress the outcome on the exposure
and a model-averaged propensity score, as obtained by stan-
dard frequentist or Bayesian model averaging procedures. It
will be worthwhile to formally compare BAC with these and
other alternatives.

To gain preliminary insight, I have repeated simulation
study 2 of WPD with n = 100 to mimic a setting where the in-
formation is scarce. The suggested propensity score procedure
was implemented in two ways: once by stepwise regression (us-
ing the BIC) and once by a model-averaged propensity score
using the weights exp(AIC/2) (Buckland et al., 1997), where
the AIC relates to the exposure model only. This resulted in
an exposure effect estimator with bias 0.029 and 0.007, empir-
ical standard deviation 0.216 and 0.218, and MSE 0.047 and
0.048, respectively. This improves upon fitting a main effects
model with all covariates, but is inferior to BAC, which re-
spectively yield a bias of 0.014 and 0.059, empirical standard
deviation 0.255 and 0.162, and MSE 0.065 and 0.032. These
differences appear at odds with the close relatedness of the dif-
ferent proposals. They call for a more in depth exploration to
understand whether the superior performance of BAC is con-
sistent (versus specific to this simulation) and whether it is
related to its preferential tendency to exclude covariates from
the exposure model, which could be a concern under other
data-generating mechanisms with strong correlation between
confounders and exposure.

3. Limitations of BAC
The proposals of WPD seem generic, but are essentially lim-
ited to linear models. This is because adjustment for a covari-
ate in a nonlinear model typically changes the meaning and
magnitude of the exposure effect systematically. Contrary to
what the authors claim, this is so even when that covariate is
not associated with the exposure and thus not a confounder,
as a result of so-called noncollapsibility of many association
measures. Adjustment for such covariates in nonlinear mod-
els is also typically disadvantageous as it may reduce precision
(Robinson and Jewell, 1991). Vansteelandt et al. (2012) over-
come these concerns by focussing confounder selection on the
quality of population-averaged exposure effects. For instance,
in logistic regression models for the outcome,

E(Yi |Xi , Ui ) = expit

(
βα Y

Xi +
M∑

m =1

αY
m δα Y

m Uim

)
,

they note that

E{Y (x)} = E

{
expit

(
βα Y

x +
M∑

m =1

αY
m δα Y

m Uim

)}
,

is the expected outcome that would be observed if all mem-
bers of the population had exposure level X = x, provided
that Ui is a set of covariates sufficient to control for confound-
ing. The population-averaged exposure effect can then be de-
fined as a contrast of E{Y (x)} for different values of x, e.g.,
E{Y (x + 1)} − E{Y (x)} or E{Y (x + 1)}/E{Y (x)}. Alterna-
tively, it can refer to a contrast with the observed outcome,
e.g., E(Y )/E{Y (0)}, or express the effect of changes in the ob-
served exposure distribution, e.g., E{Y (1.1X)}/E{Y (X)} =
E{Y (1.1X)}/E(Y ). Extending BAC/TBAC to these effect
estimands will be essential.

A possibility would be to adapt the proposed procedure
so that it provides model-averaged predictions of exposure
and outcome, which may subsequently be used as input for
more general (possibly frequentist) causal effect estimators.
For instance, for discrete X , a doubly robust estimator of
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E{Y (x)} is

1
n

n∑
i=1

I(Xi = x)
P (Xi |Ui )

{Yi − E(Yi |Xi = x, Ui )} + E(Yi |Xi = x, Ui ).

The proposed procedure could be used to obtain model-
averaged estimators of P (Xi |Ui ) and E(Yi |Xi = x, Ui ) in a
way that primarily targets the inclusion of all confounders.
These arguments more generally suggest that the authors’ fo-
cus on a single regression coefficient in the outcome regression
model may be limiting.

4. What is BAC Targeting?
BAC intuitively makes sense, but its heuristic nature leaves
some vagueness as to whether it enjoys any specific optimality
properties. Vansteelandt et al. (2012) develop model selection
strategies which target minimal mean squared error of the
exposure effect estimator. This can be a desirable goal, given
practitioners’ disproportionate focus on point estimates. Low
MSE may also indirectly be targeted by regressing the out-
come on the exposure and a model-averaged propensity score,
with model-averaging weights given by the reciprocal of the
variance of the exposure effect estimator in a propensity score
adjusted analysis. For illustration, I evaluated this in the sim-
ulation study of the authors’ Web Table 1 (where the presence
of covariates that are solely associated with the exposure is
particularly challenging for propensity score analyses). This
resulted in an exposure effect estimator with bias 0.007, em-
pirical standard deviation 0.040 and MSE 0.0016. This greatly
improves upon both BAC and fitting a model which includes
all main effects, which gave bias 0.001 and 0.007, empirical
standard deviation 0.072 and 0.078, and MSE 0.006 and 0.006,
respectively.

A more prudent strategy may be to seek an honest reflec-
tion of the overall uncertainty, and thus to target confidence
validity. This is most easily obtained by avoiding model se-
lection to the extent possible, by working under large models.
Budtz-Jörgensen et al. (2005) find that this may even lead to
tighter confidence intervals than those obtained after model
selection when model uncertainty is taken into account. For
instance, fitting a full model (i.e., including all covariates)
considered in simulations 1 and 2 of WPD, resulted in an
exposure effect estimator with bias 0.0005 and 0.002, empir-
ical standard deviation 0.046 and 0.051, and MSE 0.002 and
0.003, respectively; coverages of 95% confidence intervals were
94.9% and 94.7%. These results are almost identical to those
obtained by fitting the true model (see Tables 3 and 4, re-
spectively), suggesting that there was actually no need for
model selection in those simulation studies. To fully appreci-
ate the performance of BAC, further simulation studies will
be needed in settings where model reduction is essential.

Vansteelandt et al. (2012) suggest alternative ways to guar-
antee confidence validity. Under certain assumptions, they
demonstrate that a conservative asymptotic variance of the
exposure effect estimator can be obtained, even when impreci-
sion because of estimation and model selection on the propen-
sity score is ignored, provided that the propensity score is ef-
ficiently estimated. Application of (such) procedures which
exclusively adopt model building on the propensity score,
thus guarantees (approximate) confidence validity, provided

of course that the candidate list of models includes the true
propensity score model.

It seems that BAC might come closer to a procedure that
guarantees confidence validity for large ω (by forcing predic-
tors of the exposure in the outcome regression model), al-
though its potential tendency to preferentially exclude covari-
ates from the exposure model leaves doubts as to whether this
is generally true. For small ω, BAC might instead come closer
to a procedure that favors minimal MSE, although it remains
unclear to what extent this is so as BAC does not directly
target minimal MSE. Further investigation will be important
to understand the properties of BAC in function of ω. This
will help practitioners to make an informed choice of ω, and
may reduce the risk of selecting ω in a data-driven way.

5. Conclusions and Possible Extensions
In summary, the proposed procedure of confounder selection
is attractive for its focus on confounders and for acknowledg-
ing model uncertainty. In its current form, the procedure is
essentially limited to the analysis of linear models because of
noncollapsibility of many association measures, but the ap-
proach could be extended to more general models along the
lines described in Section 3.

The general principle of preventing factorization of the
joint outcome and exposure distributions is attractive for con-
founder selection. It has also been seen in other contexts. For
instance, when the outcome regression model is defined to
be one that minimally includes the exposure and propensity
score, then the inclusion of the propensity score necessarily
prevents factorization (McCandless et al. 2009). Tan (2006)
prevents factorization by ignoring part of the information on
the joint distribution of outcome and covariates (at fixed ex-
posure levels). It will be of interest to understand better how
these different alternatives relate to BAC. For instance, what
if standard Bayesian model averaging were applied on the
basis of the joint outcome and exposure distribution in set-
tings where the linear outcome regression model includes the
propensity score?

The general principle of preventing factorization of the joint
outcome and exposure distributions may also be more broadly
applicable in other contexts. For instance, Greenland (2008)
rightly argues that in practical applications, all available co-
variates will be somewhat associated with outcome and ex-
posure. He therefore argues in favor of shrinkage estimators
under a “large” model for the outcome. A limitation of stan-
dard shrinkage procedures is that they do not target the ex-
posure effect of interest. This may potentially be remedied by
focussing on exposure and outcome models of the form

E(Xi |Ui ) =
M∑

m =1

δX
m Uim

E(Yi |Xi , Ui ) = βX +
M∑

m =1

δY
m Uim

δX
m ∼ N

(
0, σ2

X

)
for m = 1, . . . , M

δY
m

∣∣δX
m ∼ N

(
0, σ2

Y

(
1 + δX 2

m /σ2
X

))
for m = 1, . . . , M,

where priors are used to penalize large regression coefficients.
Here, the choice of priors ensures less penalization of outcome
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regression coefficients that correspond to strong predictors of
the exposure. The resulting ridge regression seems close in
spirit to BAC with a focus on confounding adjustment, but
might be computationally advantageous relative to BAC and
have the further advantage of not selecting confounders out
of the analysis.

In conclusion, the principle underlying BAC holds much
promise. However, as shown, many related—perhaps less com-
putationally challenging—procedures can be conceived, which
do not require novel model averaging strategies. Much ob-
scurity remains as to how BAC relates to these and other
more common approaches based on propensity scores and as
to how to best choose ω in practice. Before widespread use of
BAC can be recommended, closer scrutiny of its theoretical
properties will be essential, as well as evaluation in realistic
simulation studies where dimension reduction is critical (that
is where, unlike in the considered simulation studies, fitting
a full model which includes all covariates yields poorly per-
forming estimators).
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I am delighted to comment on this provocative and inno-
vative paper. My comments will address the intersection be-
tween adjustment uncertainty and propensity score (PS) tech-
niques. Adjustment uncertainty, as defined by Wang, Parmi-
giani and Dominici (WPD, 2011), refers to the uncertainty
about which covariates should be accounted for to adjust
properly for confounding. PS techniques are a class of meth-
ods for controlling confounding in observational studies. In a
PS analysis, we combine information from a vector of covari-
ates for each study participant into a single summary score,
which is the probability of exposure given the covariates. The
score is then used to adjust for confounding. We can stratify
on the PS, use inverse probability weighting and matching, or
we can include it as a covariate in a regression model for the
outcome. To estimate the PS, we need a model for the expo-
sure. Ideally, the investigator has identified the confounders
beforehand and can elicit a realistic model for probability of

exposure. But, in practice, researchers are often faced with
a large array of covariates, and this demands a data-driven
approach to model selection.

Variable selection for PS models is an exciting area of in-
novation in statistics. Much recent work has been champi-
oned by Schneeweiss et al. (2009) in pharmacoepidemiology.
Schneeweiss argues that when choosing variables to include
in the model for exposure, we must take into consideration
the relationship with the outcome. Including variables unre-
lated to the outcome in the PS increases the variance of the
exposure-effect estimate, with no commensurate reduction in
bias. Essentially, the message is that we should only include
genuine confounders in the PS.

Schneeweiss et al. (2009) describes novel procedures for
variable selection. One thing that struck me when reading the
Schneeweiss paper was that the methods are similar to those
described by Crainiceanu, Dominici, and Parmigiani (2008).
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Table 1
A comparison of the performance of four different exposure models that are used to calculate the estimated PS. Models 1, 2, and

3 are missing important confounders. They give biased estimates of the true exposure effect, which is equal to zero

Prediction error
Exposure effect

Model estimate for X for Y Fitted model for X

1 2.18 0.69 1.10 logit[P̂ (X = 1)] = 0.0
2 0.86 0.62 0.68 logit[P̂ (X = 1)] = 0.0 + 0.84C1

3 1.69 0.62 1.04 logit[P̂ (X = 1)] = 0.0 + 0.84C2

4 0.00 0.54 0.64 logit[P̂ (X = 1)] = 0.0 + 1.0C1 + 1.0C2

For example, compare table 3 from Schneeweiss et al. (2009)
with figure 1 of Crainiceanu et al. (2008). Both papers at-
tempt to fit joint models for the exposure and outcome to
identify confounders. Thus, it appears that an immediate ap-
plication of adjustment uncertainty is that it provides a prin-
cipled framework for variable selection in PS models.

How to combine adjustment uncertainty with PS tech-
niques? A simple strategy would be to modify the proce-
dure of Crainiceanu et al. (2008). At Steps 3 and 8, we
would first calculate the estimated PS based on each subset
of U = (U1, . . . , UM) in the dominant model class. Next, we
would plot point and interval estimates for the exposure effect
calculated by adjusting for the estimated PS. In other words,
we swap out the U ’s in place of a linear predictor calculated
from the PS.

A Bayesian approach has additional advantages. Rather
than adjusting for the estimated PS based on a single ex-
posure model, we could average over different models. This
incorporates uncertainty in the PS that arises from uncer-
tainty in the PS model. I suspect that such a method would
be superior to conventional techniques in the face of model
misspecification. In addition, a Bayesian approach would
permit the incorporation of standard Bayesian machinery,
such as prior information, complex modeling, and MCMC
computation.

I was intrigued by the discussion of feedback from the out-
come in BAC and TBAC. Feedback describes the situation
in which the outcome variable “interferes” with estimation
of the exposure model. One consequence of combining the
PS with Bayesian model averaging is that feedback could
potentially inform the choice of exposure model, and there-
fore, the estimated PSs. To see how this would work, consider
a simple illustration involving a Gaussian response variable
Y , a dichotomous 0/1 exposure X , and two Gaussian co-
variates C1 and C2. Suppose that the true data generating
mechanism is,

C1, C2 ∼ N (0, 1)

X |C1, C2 ∼ Bernoulli

(
exp(C1 + C2)

1 + exp(C1 + C2)

)
Y |X, C1, C2 ∼ N (2C1 + C2, 1).

In this scenario, the true effect of X on Y given (C1, C2) is
zero. The variables C1 and C2 are both confounders, but C1

is more strongly associated with Y .
Let’s suppose that the investigator plans to adjust for con-

founding from (C1, C2) by estimating the PS and then, includ-

ing it as a covariate in a regression model for the outcome. In
other words, the plan is to first estimate the PS for each study
participant, denoted Ẑ , where Ẑ is the fitted value from lo-
gistic regression with X as the dependent variable and either
C1 or C2 as independent variables. Next, the investigator will
estimate the effect of X on Y while controlling confounding
by using the model,

Y = α + βX + ξẐ + ε, where ε ∼ N (0, σ2), (1)

to estimate the unknown parameters (α, β, ξ, σ2). Note that
using equation (1) for exposure effect estimation differs from
WPDs approach. WPD build separate models for the ex-
posure and outcome as a direct function of the original
covariates.

Suppose that the true data generating mechanism is un-
known to the investigator and a debate centers upon which
variables to include in the model for the exposure. We limit
the discussion to choosing among four candidate models that
include either C1 or C2 or both (C1, C2) or neither as covari-
ates in the logistic regression model with X as the dependent
variable. Table 1 shows the four candidate exposure models,
which have been fitted to a very large synthetic dataset that
is sampled from the true data generating mechanism. Thus,
we can assume that random error is negligible. The estimated
exposure effects are given for each model (true value is zero).
Obviously Model 4 gives the right answer, whereas Models 1,
2, and 3 are missing important confounders.

In addition, Table 1 shows the estimated average prediction
error of the fitted regression models for X and for Y . The
average prediction error for X is defined as,

−E[X log Ẑ + {1 − X} log{1 − Ẑ}],
where the expectation is over the joint distribution of X and
Ẑ (see section 5 of McCandless, Gustafson, and Austin (2009)
for discussion on how this is estimated. Essentially, we train
the model and then estimate the average prediction error in
the same large dataset). The prediction error for Y is,

E
( 1

2σ̂2 [Y − {α̂ + β̂X + ξ̂Ẑ}]2
)

.

Smaller prediction errors tell us that the model gives a better
overall fit for the data.

If we look at prediction error for X , then Models 2 and
3 do equally well, and both give errors equal to 0.62. This
is expected because C1 and C2 have the exact same asso-
ciation with the probability of exposure. From a conven-
tional PS modeling perspective, the investigator would be
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ambivalent in choosing C1 over C2 for inclusion into the expo-
sure model. However, the interesting point is that adjusting
for Ẑ calculated from C1 does much better in predicting the
outcome variable. The prediction error for Y for model 2 is
0.68, which is smaller than 1.04 for model 3. The message is
that incorporating outcome risk factors in the PS improves
the fit of the outcome model.

If we incorporate feedback from the outcome, then a
Bayesian analysis will prefer PS estimates calculated from
model 2 rather model 3 because it seeks to optimize the fit
of X and Y simultaneously. C1 is the preferred variable be-
cause it is a more powerful confounder. However, the benefits
of feedback are not obvious. One the one hand, joint fitting
of the exposure and outcome model is appealing because it
makes fuller use of the data. But, on the other hand, it need
not improve estimation of the exposure effect. McCandless
et al. (2009) investigated Bayesian regression adjustment for
the PS. They showed that incorporating feedback from the
outcome can increase the mean squared error of the exposure
effect, even if all models are correctly specified. Furthermore,
if equation (1) is misspecified, then feedback can introduce
bias in the estimated PS because of contamination between
models.

Interestingly, using Y to estimate the PS flies in the face of
convention. Rubin (1997) writes “In this prediction of treat-
ment group measurement, it is critically important that the
outcome variable (e.g., death) play no role; the prediction of
treatment group must involve only the covariates.” Later, he
acknowledges “A final possible limitation of PS methods is
that a covariate related to treatment assignment but not to

outcome is handled the same as a covariate with the same
relation to treatment assignment but strongly related to out-
come.” Thus, I view the interplay between exposure and re-
sponse models as an exciting opportunity for innovation. Note
that the magnitude of the feedback will depend strongly on
the manner in which Ẑ enters into equation (1). In my ex-
ample, the variable Y is assumed to depend linearly on the
PS, but in real-life examples it might make sense to incorpo-
rate the PS nonparametrically into the model (Lunceford and
Davidian, 2004).
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We are grateful to the Editors for the opportunity to pub-
lish our article with discussion and to the discussants for their
insightful and stimulating comments.

We proposed an approach to account for uncertainty in
variable selection when the goal is estimation of a regression
coefficient within a linear model. Despite the variety of more
advanced methodologies available for describing relationships
between variables, linear regression is still a very widely ap-
plied tool across science. The vast majority of linear regres-

sions are run for the explicit purpose of estimating coefficients,
often a single coefficient; the near totality of these use infer-
ence methods that ignore the uncertainty in the selection of
the other variables entering the regression equation. So, al-
though admittedly this is a relatively simple setting, we hope
to have addressed a broadly applicable need.

The discussants raise many issues. Most touch on one of
two themes. First, to what extent can this methodology be ex-
tended successfully beyond linear models? Second, what is its
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Table 1
Comparison of estimates of β from BAC, TBAC, and the full
model. Data were generated as in the two simulation scenarios
in the article, but with sample size 100. BIAS is the difference
between the mean of estimates of β and the true value, SEE is
the mean standard error of the estimates, SSE is the sample
standard error of the estimates of β across simulations, MSE
is the mean squared error, and CP is the coverage probability

of the 95% confidence interval or credible interval

Simulation
scenario Method BIAS SEE SSE MSE CP

One BAC −0.006 0.142 0.152 0.023 0.93
TBAC −0.005 0.149 0.155 0.024 0.94
Full model −0.009 0.207 0.207 0.043 0.94

Two BAC 0.059 0.162 0.170 0.032 0.92
TBAC 0.041 0.175 0.178 0.033 0.94
Full model −0.005 0.253 0.257 0.066 0.95

relation to approaches for effect estimation developed in the
causal inference literature? These interests are very encourag-
ing, as they suggest that our ideas can provide the foundation
for yet more broadly applicable tools. With regard to causal
inference, one of our take-home messages from the discussions
is that this field would benefit from a more explicit investiga-
tion of the implications of model uncertainty. We look forward
to future developments in this area.

Because of the scope of the points raised, fully addressing
them would require years of work. We do look forward to that
work and we started chipping a little bit at it, with additional
simulations we present here. Our responses are organized by
topic, as there is some overlap in the issues raised.

1. When it is Useful to Account for Model
Uncertainty

Vansteelandt points out that our simulations 1 and 2 in
Section 4 do not fully illustrate the need for accounting for
model uncertainty, because the sample size is large (n = 1000)
compared to the number of potential confounders (M < 60).
We agree; model uncertainty becomes more pressing with
small to moderate sample sizes, or with a larger number of po-
tential confounders. To illustrate, Table 1 presents additional
simulation results supplementing those originally reported in
Web Appendix E. The settings are the same as in simula-
tions 1 and 2, except that the sample size is now 100, and we
have added results for the full model. Compared to BAC and
TBAC, the full model yields larger standard errors and MSEs
for the estimate of β.

2. Optimality of BAC and Choice of ω

We also agree with Vansteelandt’s comment that further
study of the optimality properties of BAC would be impor-
tant. In general, a Bayesian estimator based on posterior mean
minimizes the expected MSE, where the expectation is com-
puted with respect to the prior. Thus, as a general rule of
thumb, BAC will perform well on average over possible pa-
rameter values, and will perform well for specific parameter
choices that are well supported by the prior. It will do less
well in scenarios which are considered less likely by the prior.
BAC incorporates exposure model information in the spec-

ification of the outcome model prior. This is more effective
for exposure effect estimation than the “flat” prior implicit in
BMA (see Section 3 of the article).

One of the challenges of applying BAC is the choice of ω.
Vansteelandt makes interesting observations about the po-
tential connection between the choice of ω and frequentist
optimality criteria, including confidence validity and MSE.
This issue needs to be investigated further. Generally speak-
ing, a large ω may favor inclusion of confounders in the out-
come model and, thus, reduce bias; however, relations to other
criteria are less clear. In the situations of simulations 1 and
2, ω = ∞ yields the smallest MSE. In addition, ω = 1 corre-
sponds to the BMA method, which does not utilize the ex-
posure model information and has the largest MSE in most
of our simulations. We conjecture that the relation between
MSE and value of, ω, may not always be monotone and may
be data dependent.

3. BAC for Causal Inference
In causal inference, the estimand is often the average causal ef-
fect (ACE) of exposure (or treatment) defined as Δ(d1, d2) =
E{Y (d1)} − E{Y (d2)}, where Y (d1) and Y (d2) are the out-
comes, possibly unobserved, that occur if the exposure levels
were d1 and d2, respectively. Schafer and Kang (2008) studied
the connections between Δ(d1, d2) and the exposure coeffi-
cient, β, from the true regression model that characterizes
the relationships among potential outcomes, exposure, and
confounders. If the regression model is linear and there are
no interactions between X and the true confounders U ∗, then
Δ(d1, d2) = β(d1 − d2). When there are interactions between
X and U ∗, this equality still holds if the confounders are
included after subtracting their population means. In these
cases, BAC is directly useful for estimating the ACE.

To understand limitations and potential extensions, it is
useful to review the assumptions for this equality. The first
is the stable unit treatment value assumption (SUTVA; Rubin,
1980), which states that the potential outcomes for one unit
are unaffected by the exposure assignments of other units.
The second is strong ignorability (Rosenbaum and Rubin,
1983) which assumes that P (X | Y (0), . . . , Y (D), U ∗) =
P (X | U ∗). This in turn guarantees that P (Y (d) | U ∗) =
P (Y | X = d, U ∗), where Y is the observed outcome. If these
hold,

Δ(d1, d2) = EU ∗ [E{Y |X = d1, U
∗} − E{Y |X = d2, U

∗}], (1)

where EU ∗ is the expectation with respect to U ∗.
If the outcome Y is discrete and we are using a general-

ized linear model (GLM), then β(d1 − d2) is different from
Δ(d1, d2). Vansteelandt points out that in this case Δ(d1, d2)
can still be obtained by contrasting population-averaged ex-
posure effects as in (1). See also Lunceford and Davidian
(2004) for the definition of Δ(d1, d2) in the context of a logis-
tic regression. Therefore, if the adjustment for confounding is
done by using a regression model, the extension of BAC to
a GLM is straightforward, because posterior distributions of
population average exposure effects can be obtained as a by-
product of the posterior samples of all the unknown parame-
ters, complemented, if required by the design, by modeling of
the marginal distribution of U ∗.
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Confounder selection is central to the analysis of essen-
tially all observational studies, yet the problem of uncertainty
about this selection has received remarkably little attention
in the causal inference literature. Although many papers pro-
vide some general advice on this topic (Brookhart et al., 2006;
Stuart, 2010), a general statistical approach that selects the
variables that must be included, and whose objective is ef-
fect estimation rather than prediction, is lacking. Based on
jointly modeling the exposure and outcome models, BAC ad-
dresses model selection and the associated uncertainty in both
the exposure and outcome models and weights more heavily
the models that include all the necessary confounders in an
automated and data-driven way. Because the posterior dis-
tribution is obtained by averaging across different exposure
and outcome models, it will provide estimates of ACE that
account for model uncertainty in both. Importantly, we only
need to assume that U , the full set of the measured con-
founders, contains the true set U ∗. We do not need to know
U ∗ exactly.

4. Propensity Scores
BAC could also be further developed to account for model
uncertainty in causal inference when propensity score-based
methods are used to adjust for confounding (Rosenbaum and
Rubin, 1983; Lunceford and Davidian, 2004; Schafer and
Kang, 2008; Stuart, 2010). Propensity score-based methods
are usually developed for binary exposures, although general-
ization to arbitrary type of exposure is possible (Imai and van
Dyk, 2004; Hirano and Imbens, 2005). Connections between
BAC and methods for causal inferences with continuous ex-
posure that use generalized propensity score methods need to
be explored further.

Although the literature on propensity scores is vast, ex-
isting approaches do not account for the uncertainty about
which confounders should be included in the exposure or the
outcome models. Generally, a propensity score model is spec-
ified with a priori knowledge about which covariates should
be included. Then the estimated propensity score can be in-
cluded as a covariate in the outcome model or used to cre-
ate strata with similar scores, in which case the ACE is
estimated by a weighted average of group-specific ACE esti-
mates weighted by the proportion of subjects in that stratum
(Rosenbaum and Rubin, 1983, 1984; Lunceford and Davidian,
2004). Although stratification is expected to balance the co-
variates, it is often suggested to fit, within each stratum, an
outcome regression model including some or all the potential
confounders, to reduce residual within-stratum confounding
(Lunceford and Davidian, 2004; Stuart, 2010). An alternative
approach is to construct inverse-propensity weighted estima-
tors, including doubly robust estimators (Scharfstein et al.,
1999; Robins, Rotnitzky, and Zhao, 1994; Tan, 2010).

Confounder selection could be addressed by standard vari-
able selection techniques applied to both the propensity and
outcome models. To account for the uncertainty in selection,
one could conduct two separate BMA approaches. However,
we presented evidence that suggests that there are important
differences between adjustment uncertainty and model uncer-
tainty. In adjustment uncertainty, the goal is to estimate the
effect of an exposure X on the outcome Y accounting for the
uncertainty about which confounders U need to be included

into the model. In model uncertainty, all predictors (X, U ) are
equally important, and their inclusion in the regression model
is evaluated based on measures of performance in predicting
Y . We, thus, expect that standard approaches for variable se-
lection and for accounting for model uncertainty may not be
ideal in this context of propensity score analysis. More specif-
ically, variable selection based on the propensity score model
only prioritizes covariates that are strongly associated with X ,
whereas variable selection based on the outcome model only
prioritizes the covariates strongly associated with Y . Both
these approaches can result in inefficient and biased infer-
ences because they will likely fail to identify the set of true
confounders U ∗ (Brookhart et al., 2006; Hahn, 2004; Imbens,
2004; Schneeweiss et al., 2009). With BAC, we proposed an
approach for conducting a joint BMA for the exposure and
the outcome models in the context of a linear regression. Ex-
tending this approach to propensity score methods is possible
and promising.

In propensity score methods, “standard errors for the
treatment effect estimate are usually calculated without ac-
knowledging uncertainty in the estimated propensity scores”
(McCandless et al., 2009). BAC jointly models the expo-
sure and outcome models and utilizes model averaging to
summarize information across different models. Thus, it pro-
vides a Bayesian framework to fully account for uncertainty
in variable selection, and can potentially give more accu-
rate estimates of the standard errors. McCandless raises the
interesting question of whether feedback from the outcome
model should be used for estimation of the exposure model.
In the propensity score literature, it is debated whether Y
should be used to estimate the propensity score (McCand-
less et al., 2009). In our article, we discuss two approaches;
TBAC allows no feedback. BAC allows for a specific type
of feedback: Y can inform which confounder should be in-
cluded in the exposure model; but conditional on this in-
clusion, Y does not inform the estimation of the regression
coefficients in the exposure model. This is because the ex-
posure model parameters are independent from the outcome
model parameters conditional on the α’s. Web Appendix D
compared BAC to TBAC in simulations. Although there is
some difference in covariates’ inclusion probabilities based
on BAC versus TBAC in the exposure model, there is no
major difference in the inclusion probabilities in the out-
come model. However, these results could be specific to the
simulation scenarios used, and more comprehensive inves-
tigation will be required to fully understand the feedback
effect.

5. An Alternative Prior
Vansteelandt proposes an alternative prior, which assigns to
each potential confounder an equal prior probability of being
included or excluded in the exposure model. We have imple-
mented BAC using this prior and applied it to simulation 2,
with sample size 100. The results are very close to those ob-
tained from BAC using our original prior: the bias is 0.061,
the standard error of the estimates is 0.169 and the MSE is
0.032. This suggests that the difference in results between the
suggested propensity score procedure with variable selection
(Vansteelandt, Section 2) and BAC may not be due to the
prior specifications. Vansteelandt performs model selection on
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the propensity score model by selecting the confounders for
inclusion in the propensity score model based on their ability
to predict X . This assigns lower weights to propensity score
models that include covariates that are associated with Y but
not associated with X , for example, U8–U14. These variables,
although they are not confounders, are predictors of Y . In-
cluding them in the model may reduce the standard error of
the estimate (Brookhart et al., 2006).

6. Nonlinearities, Interactions, and Sparse
Confounders

Gutman and Rubin compare methods in an example that in-
cludes obvious nonlinearities in the effect of X on Y , pro-
nounced interactions involving X and U , and limited overlap
between U | X = 0 and U | X = 1. Within linear models with
no interactions, there is a correspondence between ACE es-
timation and regression analysis. If the model assumptions
fail, then (a) this correspondence will no longer hold, and (b)
analysis based on linear models will give poor results whatever
the goal. We are aware of this. It is highly unlikely that any
of us would have used linear models in the analysis of data
with these features just described, which would have been
revealed by the most basic model diagnostics. Also, Gutman
and Rubin label as WPD a linear model which does not jointly
model exposure and outcome, and includes no consideration
of model uncertainty—the two main points of our work. This
labeling seriously misrepresents our proposal. More meaning-
ful comparisons would require a bona fide extension of BAC
to nonlinearity and interactions, and a decision about whether
coefficients or ACE are of interest. We think BAC could
be generalized in both directions but the ultimate method
would differ depending on whether ACE or coefficients are
investigated.

BAC was motivated by the estimation of the health effects
of air pollution in the context of time series studies. Here,
because the treatment assignment, the outcome, and the con-
founders are all serially correlated, the key assumptions for
estimating causal effects are either violated or more compli-
cated to formalize. For example, it is not necessarily clear how
to define “ignorable treatment assignment” when the “treat-
ment” is spread across time and can change with previous ex-
posures or outcomes. Steps in the directions of meeting these
challenges exist, for example in the context of causal inference
for dynamic treatment regimens. See Zhang, Joffe, and Small
(2011) and references therein. However, estimating ACE in
time series studies would require the development of a whole
new causal framework.

Using an assumption of independence between units,
Gutman and Rubin propose an estimation approach (GR)
that consists of three steps; (1) preprocessing; (2) matching;
and (3) semi-parametric estimation of ACE within each stra-
tum obtained by fitting two separate regression models for
Y (1) | U and Y (0) | U . This method is well justified in the
context of data such as those in their comment, but it is tai-
lored for a class of problems that is completely different from
that for which BAC is designed. This point is well illustrated
by Gutman and Rubin’s simulation scenario, which involves
the combination of the following features: (1) there is only
one confounder U ; (2) the empirical distributions of U in the
treated and the control groups have limited overlap; (3) the

treatment effect is a highly nonlinear function of U ; and (4)
the outcome is generated from a deterministic function of X
and U without any noise. Figure 1(a) depicts potential out-
comes versus U in a data set simulated from their scenario.
These are superimposed to histograms of U by group, high-
lighting the limited overlap of the two empirical distributions.
It would be interesting to know what type of real application
motivated this construct.

Their setting creates an ill posed problem for any regression
model, irrespective of the issue of selection of confounders. In
presence of highly nonoverlapping distributions of the con-
founders between the two groups, a misspecified regression
will fail to extrapolate reliably. The importance of overlap
for estimating ACE has been widely accepted and exten-
sively studied (King and Zeng, 2005; Schafer and Kang, 2008;
Crump et al., 2009; Stuart, 2010). One solution is to prepro-
cess the data and fit the model only for the units whose U ’s
are in the overlapping region of the empirical distributions of
U |X = 0 and U |X = 1.

Gutman and Rubin compare GR to the regression model
of their equation (8); they label it WPD, we refer to it as
Model (8). When they evaluate the MSE, coverage and bias,
the estimand for Model (8) is the full-population truth, that
is the average treatment effect across the entire range of U ’s.
In contrast, the estimand for GR is different: their estimand
is a sub-population truth, where the averaging is done only
on the region of overlap. Because the exposure effect varies
with U , the two target estimands can differ, and they do by
more than twofold in some samples, as shown in Figure 1(b).
Estimation of the full-population truth is much harder, and
not an entirely meaningful endeavor given the extrapolation
needed.

To provide a more objective comparison, we separately
evaluate the full-population and sub-population estimation
problems. We generate data as in Gutman and Rubin for
B = 2, σ2 = 0.5, 1, 2, 4. We consider both n = 600, as they do,
and n = 60. We compare three methods: (1) the True Model as
defined in equation (6) of Gutman and Rubin; (2) Model (8),
which allows for a nonlinear interaction between X and U ,
fit using either the same normal-gamma prior used in BAC,
or a noninformative prior π(θ, σ2

Y ) ∝ σ−2
Y , where θ is a vector

of model coefficients and σ2
Y is the variance of error term;

and (3) a simple extension of BAC. The extension of BAC is
defined as follows. We take Model (8) as the full model. We
then include random indicators for inclusion of both main ef-
fect and interaction terms, and jointly considering exposure
and outcome models in a linear form, as in the article. We set
the constraints that an interaction term can be selected into
the model only if the main effect term has already been se-
lected, and that a main effect can be removed from the model
only if the interaction has been removed. We, then, fit these
three approaches to both the full data set and to a subset,
obtained by discarding units from both the treatment and
control groups with U ’s not in the range of U ’s in the other
group (King and Zeng, 2005).

We first performed this analysis on the full data. In this
case, the estimand is the full-population truth. Results are
summarized in the top half of Table 2 and indicate that: (1)
the true model is best; this is expected because under the
true model we are imputing the missing potential outcomes
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Figure 1. (a) Potential outcomes versus U in a simulated data set with B = 2, σ2 = 2. Histograms show the distribution of
U by group. The two dotted lines indicate the overlapping region of the empirical distributions of U. (b) Subpopulation ACEs
from 500 simulated data sets in each simulation scenario. The dashed line is the full-population ACE. Value were calculated
based on a simulated data set with extremely large sample size (n = 3,000,000).

perfectly, even outside the range of the observed data; (2)
BAC is far superior to Model (8) that is, it performs much
better than fitting a wrong, but somewhat flexible, model to
the full data. This suggests that accounting for model uncer-
tainty robustifies the analysis against model mis-specification.
Although a full extension of BAC would require a binary ex-
posure model, in the time allotted for preparation of this re-
joinder we could only fit a linear exposure model. Nonetheless,
BAC provides a real advantage, likely because even a partly
misspecified exposure model can provide useful information
on which confounders to include.

Next, we performed an analysis on the overlap region only,
changing the estimand to be the sub-population truth. The
numerical value of this estimand can differ across simulated

data sets. However, unlike in Gutman and Rubin, it is the
same for all the methods, for a given data set. It would be
more rigorous to define the truth based on a fixed and un-
known subpopulation, to generate metrics that also reflect
sampling variability in the preprocessing, but for comparabil-
ity with Gutman and Rubin we did not do so here. Results
are in the bottom half of Table 2 and can roughly be com-
pared to those of Gutman and Rubin, though differences may
exist in our definitions of subpopulations. Our results indicate
that: (1) Model (8) and BAC evaluated on the subpopulation
perform a lot better than when evaluated on the full data; (2)
no clear ranking emerges between BAC and Model (8), with
the former performing better at the smaller sample size; and
(3) the gap with performance reported by Gutman and Rubin
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Table 2
Comparison of estimates of ACE from true model, Model (8) in Gutman and Rubin and BAC. For Model (8), both

noninformative (NI) and normal-gamma (NG) priors were considered. Results were based on 500 replications. BIAS is the
difference between the mean of estimates of ACE and the true value, and RMSE is the root mean square error. Values in the

table have been multiplied by 1000

Estimation of full-population ACE

σ2 = 0.5 σ2 = 1 σ2 = 2 σ2 = 4

n = 600 BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

True model −0.20 5.03 −0.19 4.88 −0.17 4.63 0.18 4.46
Model (8) NI

prior 122.91 936.68 −35.41 72.13 −5 × 103 4×104 1×105 5×105

NG
prior 18.52 19.69 31.04 37.03 82.28 93.62 174.46 183.97

BAC
12.02 17.45 9.73 13.18 23.65 47.28 −11.20 37.98

σ2 = 0.5 σ2 = 1 σ2 = 2 σ2 = 4

n = 60 BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

True model −0.82 15.03 0.63 14.86 0.08 14.25 0.58 13.23
Model (8) NI

prior −6×104 6×105 −8×104 6×105 −4×104 7×105 −7×104 1×106

NG
prior 82.81 109.33 167.60 188.30 248.34 257.58 313.05 318.29

BAC
40.63 68.59 49.63 74.43 64.70 89.52 61.94 93.76

Estimation of sub-population ACE

σ2 = 0.5 σ2 = 1 σ2 = 2 σ2 = 4

n = 600 BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

True model −0.44 5.55 −0.46 5.12 −0.54 5.24 −0.79 5.75
Model (8) NI

prior −0.42 5.54 −0.08 5.17 0.28 5.42 −0.80 6.16
NG
prior 3.28 6.65 3.26 6.33 2.99 6.87 0.69 6.73

BAC
7.73 10.28 9.28 13.31 6.16 10.67 0.17 9.39

σ2 = 0.5 σ2 = 1 σ2 = 2 σ2 = 4

n = 60 BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

True model −1.66 20.39 −2.81 20.10 −4.70 18.72 −6.83 18.59
Model (8) NI

prior −90.83 4×103 284.11 6×103 −264.98 7×103 −1×105 3×106

NG
prior 111.08 162.19 56.58 111.55 12.97 67.59 −11.74 45.44

BAC
62.18 83.88 46.45 71.20 9.23 52.14 −8.97 42.97

for the GR estimates varies with the scenario, but is generally
not wide.

In summary, BAC performs well, despite the unrealistic
and off-the-topic scenario. Conclusions based on the tables in
Gutman and Rubin are not informative for two reasons: (1)
what they call WPD is neither BAC, nor close to it; and (2)
methods should be compared only when they are estimating
the same quantity.

Both the Gutman and Rubin and our simulation stud-
ies illustrate that estimating a full-population truth in pres-
ence of nonlinearities, interactions, and sparse confounders is
much harder than estimating a carefully chosen subpopula-
tion truth. Choosing a subpopulation is critical to the success
of methods like GR, and relies heavily on the investigators’
ability to identify a priori the necessary confounders. With
a single confounder and large sample size, the preprocessing
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and the matching steps are relatively straightforward, and
nonparametric estimation is possible. BAC is motivated by
the common situation where we have a large number of po-
tential confounders, we don’t know which are the key ones,
and we don’t have an overwhelmingly large sample size. In
the presence of many confounders and limited overlap in the
distribution of some of the confounders between the treated
and untreated, extensions of the ideas in BAC could help in
identifying the set of confounders used in preprocessing and
matching, and could also potentially lead to significant im-
provement in these steps. BAC could also help in identifying
the important confounders that might need to be included in
a regression model if it is deemed necessary to estimate the
ACE within each stratum by adding some of the confounders
in the regression.
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